mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
218 lines
7.6 KiB
Python
218 lines
7.6 KiB
Python
from typing import Literal, Optional, Union, List
|
|
from pydantic import BaseModel, Field
|
|
import copy
|
|
|
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
|
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
|
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
|
|
|
class ModelInfo(BaseModel):
|
|
model_name: str = Field(description="Info to load submodel")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
model_type: ModelType = Field(description="Info to load submodel")
|
|
submodel: Optional[SubModelType] = Field(description="Info to load submodel")
|
|
|
|
class LoraInfo(ModelInfo):
|
|
weight: float = Field(description="Lora's weight which to use when apply to model")
|
|
|
|
class UNetField(BaseModel):
|
|
unet: ModelInfo = Field(description="Info to load unet submodel")
|
|
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
|
|
|
class ClipField(BaseModel):
|
|
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
|
|
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
|
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
|
|
|
class VaeField(BaseModel):
|
|
# TODO: better naming?
|
|
vae: ModelInfo = Field(description="Info to load vae submodel")
|
|
|
|
|
|
class ModelLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
#fmt: off
|
|
type: Literal["model_loader_output"] = "model_loader_output"
|
|
|
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
|
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
|
#fmt: on
|
|
|
|
|
|
class PipelineModelField(BaseModel):
|
|
"""Pipeline model field"""
|
|
|
|
model_name: str = Field(description="Name of the model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
|
|
class PipelineModelLoaderInvocation(BaseInvocation):
|
|
"""Loads a pipeline model, outputting its submodels."""
|
|
|
|
type: Literal["pipeline_model_loader"] = "pipeline_model_loader"
|
|
|
|
model: PipelineModelField = Field(description="The model to load")
|
|
# TODO: precision?
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["model", "loader"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
|
|
|
base_model = self.model.base_model
|
|
model_name = self.model.model_name
|
|
model_type = ModelType.Main
|
|
|
|
# TODO: not found exceptions
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
):
|
|
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
|
|
|
"""
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.Tokenizer,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.TextEncoder,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
|
)
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.model_name,
|
|
model_type=SDModelType.Diffusers,
|
|
submodel=SDModelType.UNet,
|
|
):
|
|
raise Exception(
|
|
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
|
)
|
|
"""
|
|
|
|
|
|
return ModelLoaderOutput(
|
|
unet=UNetField(
|
|
unet=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.UNet,
|
|
),
|
|
scheduler=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Scheduler,
|
|
),
|
|
loras=[],
|
|
),
|
|
clip=ClipField(
|
|
tokenizer=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Tokenizer,
|
|
),
|
|
text_encoder=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.TextEncoder,
|
|
),
|
|
loras=[],
|
|
),
|
|
vae=VaeField(
|
|
vae=ModelInfo(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
submodel=SubModelType.Vae,
|
|
),
|
|
)
|
|
)
|
|
|
|
class LoraLoaderOutput(BaseInvocationOutput):
|
|
"""Model loader output"""
|
|
|
|
#fmt: off
|
|
type: Literal["lora_loader_output"] = "lora_loader_output"
|
|
|
|
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
|
|
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
|
|
#fmt: on
|
|
|
|
class LoraLoaderInvocation(BaseInvocation):
|
|
"""Apply selected lora to unet and text_encoder."""
|
|
|
|
type: Literal["lora_loader"] = "lora_loader"
|
|
|
|
lora_name: str = Field(description="Lora model name")
|
|
weight: float = Field(default=0.75, description="With what weight to apply lora")
|
|
|
|
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
|
|
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
|
|
|
|
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
|
|
|
|
if not context.services.model_manager.model_exists(
|
|
model_name=self.lora_name,
|
|
model_type=SDModelType.Lora,
|
|
):
|
|
raise Exception(f"Unkown lora name: {self.lora_name}!")
|
|
|
|
if self.unet is not None and any(lora.model_name == self.lora_name for lora in self.unet.loras):
|
|
raise Exception(f"Lora \"{self.lora_name}\" already applied to unet")
|
|
|
|
if self.clip is not None and any(lora.model_name == self.lora_name for lora in self.clip.loras):
|
|
raise Exception(f"Lora \"{self.lora_name}\" already applied to clip")
|
|
|
|
output = LoraLoaderOutput()
|
|
|
|
if self.unet is not None:
|
|
output.unet = copy.deepcopy(self.unet)
|
|
output.unet.loras.append(
|
|
LoraInfo(
|
|
model_name=self.lora_name,
|
|
model_type=SDModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
if self.clip is not None:
|
|
output.clip = copy.deepcopy(self.clip)
|
|
output.clip.loras.append(
|
|
LoraInfo(
|
|
model_name=self.lora_name,
|
|
model_type=SDModelType.Lora,
|
|
submodel=None,
|
|
weight=self.weight,
|
|
)
|
|
)
|
|
|
|
return output
|
|
|