.gitignore | ||
CONTRIBUTING.md | ||
espmhp.cpp | ||
espmhp.h | ||
LICENSE | ||
README.md |
esphome-mitsubishiheatpump
Wirelessly control your Mitsubishi Comfort HVAC equipment with an ESP8266 or ESP32 using the ESPHome framework.
Features
- Instant feedback of command changes via RF Remote to HomeAssistant or MQTT.
- Direct control without the remote.
- Uses the SwiCago/HeatPump Arduino
libary to talk to the unit directly via the internal
CN105
connector.
Requirements
- https://github.com/SwiCago/HeatPump
- ESPHome 1.15.0-dev or greater
Supported Microcontrollers
This library should work on most ESP8266 or ESP32 platforms. It has been tested with the following MCUs:
- Generic ESP-01S board (ESP8266)
- WeMos D1 Mini (ESP8266)
- Generic ESP32 Dev Kit (ESP32)
Supported Mitsubishi Climate Units
The underlying HeatPump library works with a number of Mitsubishi HVAC
units. Basically, if the unit has a CN105
header on the main board, it should
work with this library. The HeatPump
wiki has a more
exhaustive list.
The same CN105
connector is used by the Mitsubishi KumoCloud remotes, which
have a
compatibility list
available.
The whole integration with this libary and the underlying HeatPump has been tested by the author on the following units:
MSZ-GL06NA
MFZ-KA09NA
Usage
Step 1: Build a control circuit.
Build a control circuit with your MCU as detailed in the SwiCago/HeatPump README. You can use either an ESP8266 or an ESP32 for this.
Note: several users have reported that they've been able to get away with not using the pull-up resistors, and just directly connecting a Wemos D1 mini to the control board via CN105.
Step 2: Use ESPHome 1.15.0-dev or higher
The code in this repository makes use of a number of features in the as-yet unreleased 1.15.0 version of ESPHome, including various Fan modes.
Step 3: Clone this repository into your ESPHome configuration directory
This repository needs to live in your ESPHome configuration directory, as it doesn't work correctly when used as a Platform.IO library, and there doesn't seem to be an analog for that functionality for ESPHome code.
On Hass.IO, you'll want to do something like:
- Change directories to your esphome configuration directory.
mkdir -p src
cd src
git clone https://github.com/geoffdavis/esphome-mitsubishiheatpump.git
Step 4: Configure your ESPHome device with YAML
Create an ESPHome YAML configuration with the following sections:
esphome: libraries: [https://github.com/SwiCago/HeatPump]
esphome: includes: [src/esphome-mitsubishiheatpump]
climate:
- set up a custom climate entry, change the Serial port as needed.- ESP8266 only:
logger: baud_rate: 0
- disable serial port logging on the sole ESP8266 hardware UART
The custom climate definition should use platform: custom
and contain a
lambda
block, where you instanciate an instance of the MitsubishiHeatPump
class, and then register it with ESPHome. It should allso contain a "climates"
entry. On ESP32 you
can change &Serial
to &Serial1
or &Serial2
and re-enable logging to the
main serial port.
If that's all greek to you, here's an example. Change "My Heat Pump" to whatever you want.
climate:
- platform: custom
lambda: |-
auto my_heatpump = new MitsubishiHeatPump(&Serial);
App.register_component(my_heatpump);
return {my_heatpump};
climates:
- name: "My Heat Pump"
Note: this component DOES NOT use the ESPHome uart
component, as it requires
direct access to a hardware UART via the Arduino HardwareSerial
class. The
Mitsubishi Heatpump units use an atypical serial port setting ("even parity").
Parity bit support is not implemented in any of the existing software serial
libraries, including the one in ESPHome. There's currently no way to guarantee
access to a hardware UART nor retrieve the HardwareSerial
handle from the
uart
component within the ESPHome framework.
Example configuration
Below is an example configuration which will include wireless strength
indicators and permit over the air updates. You'll need to create a
secrets.yaml
file inside of your esphome
directory with entries for the
various items prefixed with !secret
.
esphome:
name: denheatpump
platform: ESP8266
board: esp01_1m
# Boards tested: ESP-01S (ESP8266), Wemos D1 Mini (ESP8266); ESP32 Wifi-DevKit2
libraries:
- SwiCago/HeatPump
includes:
- src/esphome-mitsubishiheatpump
wifi:
ssid: !secret wifi_ssid
password: !secret wifi_password
# Enable fallback hotspot (captive portal) in case wifi connection fails
ap:
ssid: "Denheatpump Fallback Hotspot"
password: !secret fallback_password
captive_portal:
# Enable logging
logger:
# ESP8266 only - disable serial port logging, as the HeatPump component
# needs the sole hardware UART on the ESP8266
baud_rate: 0
# Enable Home Assistant API
api:
ota:
# Enable Web server.
web_server:
port: 80
# Sync time with Home Assistant.
time:
- platform: homeassistant
id: homeassistant_time
# Text sensors with general information.
text_sensor:
# Expose ESPHome version as sensor.
- platform: version
name: denheatpump ESPHome Version
# Expose WiFi information as sensors.
- platform: wifi_info
ip_address:
name: denheatpump IP
ssid:
name: denheatpump SSID
bssid:
name: denheatpump BSSID
# Sensors with general information.
sensor:
# Uptime sensor.
- platform: uptime
name: denheatpump Uptime
# WiFi Signal sensor.
- platform: wifi_signal
name: denheatpump WiFi Signal
update_interval: 60s
climate:
- platform: custom
# ESP32 only - change &Serial to &Serial1 or &Serial2 and remove the
# logging:baud_rate above to allow the built-in UART0 to function for
# logging.
lambda: |-
auto my_heatpump = new MitsubishiHeatPump(&Serial);
App.register_component(my_heatpump);
return {my_heatpump};
climates:
- name: "Den Heat Pump"
See Also
Other Implementations
The gysmo38/mitsubishi2MQTT
Arduino sketch also uses the SwiCago/HeatPump
library, and works with MQTT directly. The author found it's WiFi stack to not
be particularly robust, but the controls worked fine. Like this ESPHome
repository, it will automatically register the device in your HomeAssistant
instance if you have HA configured to do so.
There's also the built-in to ESPHome
Mitsubishi
climate component. It's only in the dev
branch at the moment (2020-03-11).
The big drawback with the built-in component is that it uses Infrared Remote
commands to talk to the Heat Pump. By contrast, the approach used by this
repository and it's underlying HeatPump
library allows bi-directional
communication with the Mitsubishi system, and can detect when someone changes
the settings via an IR remote.
Reference documentation
The author referred to the following documentation repeatedly: