esphome-mitsubishiheatpump/components/mitsubishi_heatpump/espmhp.cpp
2023-10-13 14:00:30 -07:00

771 lines
27 KiB
C++

/**
* espmhp.cpp
*
* Implementation of esphome-mitsubishiheatpump
*
* Author: Geoff Davis <geoff@geoffdavis.com>
* Author: Phil Genera @pgenera on Github.
* Author: Barry Loong @loongyh on GitHub.
* Author: @am-io on Github.
* Author: @nao-pon on Github.
* Author: Simon Knopp @sijk on Github
* Author: Paul Murphy @donutsoft on GitHub
* Last Updated: 2023-04-22
* License: BSD
*
* Requirements:
* - https://github.com/SwiCago/HeatPump
* - ESPHome 1.18.0 or greater
*/
#include "espmhp.h"
using namespace esphome;
/**
* Create a new MitsubishiHeatPump object
*
* Args:
* hw_serial: pointer to an Arduino HardwareSerial instance
* poll_interval: polling interval in milliseconds
*/
MitsubishiHeatPump::MitsubishiHeatPump(
HardwareSerial* hw_serial,
uint32_t poll_interval
) :
PollingComponent{poll_interval}, // member initializers list
hw_serial_{hw_serial}
{
this->traits_.set_supports_action(true);
this->traits_.set_supports_current_temperature(true);
this->traits_.set_supports_two_point_target_temperature(false);
this->traits_.set_visual_min_temperature(ESPMHP_MIN_TEMPERATURE);
this->traits_.set_visual_max_temperature(ESPMHP_MAX_TEMPERATURE);
this->traits_.set_visual_temperature_step(ESPMHP_TEMPERATURE_STEP);
// Assume a succesful connection was made to the ESPHome controller on
// launch.
this->ping();
}
void MitsubishiHeatPump::check_logger_conflict_() {
#ifdef USE_LOGGER
if (this->get_hw_serial_() == logger::global_logger->get_hw_serial()) {
ESP_LOGW(TAG, " You're using the same serial port for logging"
" and the MitsubishiHeatPump component. Please disable"
" logging over the serial port by setting"
" logger:baud_rate to 0.");
}
#endif
}
void MitsubishiHeatPump::banner() {
ESP_LOGI(TAG, "ESPHome MitsubishiHeatPump version %s",
ESPMHP_VERSION);
}
void MitsubishiHeatPump::update() {
// This will be called every "update_interval" milliseconds.
//this->dump_config();
this->hp->sync();
#ifndef USE_CALLBACKS
this->hpSettingsChanged();
heatpumpStatus currentStatus = hp->getStatus();
this->hpStatusChanged(currentStatus);
#endif
this->enforce_remote_temperature_sensor_timeout();
}
void MitsubishiHeatPump::set_baud_rate(int baud) {
this->baud_ = baud;
}
void MitsubishiHeatPump::set_rx_pin(int rx_pin) {
this->rx_pin_ = rx_pin;
}
void MitsubishiHeatPump::set_tx_pin(int tx_pin) {
this->tx_pin_ = tx_pin;
}
/**
* Get our supported traits.
*
* Note:
* Many of the following traits are only available in the 1.5.0 dev train of
* ESPHome, particularly the Dry operation mode, and several of the fan modes.
*
* Returns:
* This class' supported climate::ClimateTraits.
*/
climate::ClimateTraits MitsubishiHeatPump::traits() {
return traits_;
}
/**
* Modify our supported traits.
*
* Returns:
* A reference to this class' supported climate::ClimateTraits.
*/
climate::ClimateTraits& MitsubishiHeatPump::config_traits() {
return traits_;
}
void MitsubishiHeatPump::update_swing_horizontal(const std::string &swing) {
this->horizontal_swing_state_ = swing;
if (this->horizontal_vane_select_ != nullptr &&
this->horizontal_vane_select_->state != this->horizontal_swing_state_) {
this->horizontal_vane_select_->publish_state(
this->horizontal_swing_state_); // Set current horizontal swing
// position
}
}
void MitsubishiHeatPump::update_swing_vertical(const std::string &swing) {
this->vertical_swing_state_ = swing;
if (this->vertical_vane_select_ != nullptr &&
this->vertical_vane_select_->state != this->vertical_swing_state_) {
this->vertical_vane_select_->publish_state(
this->vertical_swing_state_); // Set current vertical swing position
}
}
void MitsubishiHeatPump::set_vertical_vane_select(
select::Select *vertical_vane_select) {
this->vertical_vane_select_ = vertical_vane_select;
this->vertical_vane_select_->add_on_state_callback(
[this](const std::string &value, size_t index) {
if (value == this->vertical_swing_state_) return;
this->on_vertical_swing_change(value);
});
}
void MitsubishiHeatPump::set_horizontal_vane_select(
select::Select *horizontal_vane_select) {
this->horizontal_vane_select_ = horizontal_vane_select;
this->horizontal_vane_select_->add_on_state_callback(
[this](const std::string &value, size_t index) {
if (value == this->horizontal_swing_state_) return;
this->on_horizontal_swing_change(value);
});
}
void MitsubishiHeatPump::on_vertical_swing_change(const std::string &swing) {
ESP_LOGD(TAG, "Setting vertical swing position");
bool updated = false;
if (swing == "swing") {
hp->setVaneSetting("SWING");
updated = true;
} else if (swing == "auto") {
hp->setVaneSetting("AUTO");
updated = true;
} else if (swing == "up") {
hp->setVaneSetting("1");
updated = true;
} else if (swing == "up_center") {
hp->setVaneSetting("2");
updated = true;
} else if (swing == "center") {
hp->setVaneSetting("3");
updated = true;
} else if (swing == "down_center") {
hp->setVaneSetting("4");
updated = true;
} else if (swing == "down") {
hp->setVaneSetting("5");
updated = true;
} else {
ESP_LOGW(TAG, "Invalid vertical vane position %s", swing);
}
ESP_LOGD(TAG, "Vertical vane - Was HeatPump updated? %s", YESNO(updated));
// and the heat pump:
hp->update();
}
void MitsubishiHeatPump::on_horizontal_swing_change(const std::string &swing) {
ESP_LOGD(TAG, "Setting horizontal swing position");
bool updated = false;
if (swing == "swing") {
hp->setWideVaneSetting("SWING");
updated = true;
} else if (swing == "auto") {
hp->setWideVaneSetting("<>");
updated = true;
} else if (swing == "left") {
hp->setWideVaneSetting("<<");
updated = true;
} else if (swing == "left_center") {
hp->setWideVaneSetting("<");
updated = true;
} else if (swing == "center") {
hp->setWideVaneSetting("|");
updated = true;
} else if (swing == "right_center") {
hp->setWideVaneSetting(">");
updated = true;
} else if (swing == "right") {
hp->setWideVaneSetting(">>");
updated = true;
} else {
ESP_LOGW(TAG, "Invalid horizontal vane position %s", swing);
}
ESP_LOGD(TAG, "Horizontal vane - Was HeatPump updated? %s", YESNO(updated));
// and the heat pump:
hp->update();
}
/**
* Implement control of a MitsubishiHeatPump.
*
* Maps HomeAssistant/ESPHome modes to Mitsubishi modes.
*/
void MitsubishiHeatPump::control(const climate::ClimateCall &call) {
ESP_LOGV(TAG, "Control called.");
bool updated = false;
bool has_mode = call.get_mode().has_value();
bool has_temp = call.get_target_temperature().has_value();
if (has_mode){
this->mode = *call.get_mode();
}
if (last_remote_temperature_sensor_update_.has_value()) {
// Some remote temperature sensors will only issue updates when a change
// in temperature occurs.
// Assume a case where the idle sensor timeout is 12hrs and operating
// timeout is 1hr. If the user changes the HP setpoint after 1.5hrs, the
// machine will switch to operating mode, the remote temperature
// reading will expire and the HP will revert to it's internal
// temperature sensor.
// This change ensures that if the user changes the machine setpoint,
// the remote sensor has an opportunity to issue an update to reflect
// the new change in temperature.
last_remote_temperature_sensor_update_ =
std::chrono::steady_clock::now();
}
switch (this->mode) {
case climate::CLIMATE_MODE_COOL:
hp->setModeSetting("COOL");
hp->setPowerSetting("ON");
if (has_mode){
if (cool_setpoint.has_value() && !has_temp) {
hp->setTemperature(cool_setpoint.value());
this->target_temperature = cool_setpoint.value();
}
this->action = climate::CLIMATE_ACTION_IDLE;
updated = true;
}
break;
case climate::CLIMATE_MODE_HEAT:
hp->setModeSetting("HEAT");
hp->setPowerSetting("ON");
if (has_mode){
if (heat_setpoint.has_value() && !has_temp) {
hp->setTemperature(heat_setpoint.value());
this->target_temperature = heat_setpoint.value();
}
this->action = climate::CLIMATE_ACTION_IDLE;
updated = true;
}
break;
case climate::CLIMATE_MODE_DRY:
hp->setModeSetting("DRY");
hp->setPowerSetting("ON");
if (has_mode){
this->action = climate::CLIMATE_ACTION_DRYING;
updated = true;
}
break;
case climate::CLIMATE_MODE_HEAT_COOL:
hp->setModeSetting("AUTO");
hp->setPowerSetting("ON");
if (has_mode){
if (auto_setpoint.has_value() && !has_temp) {
hp->setTemperature(auto_setpoint.value());
this->target_temperature = auto_setpoint.value();
}
this->action = climate::CLIMATE_ACTION_IDLE;
}
updated = true;
break;
case climate::CLIMATE_MODE_FAN_ONLY:
hp->setModeSetting("FAN");
hp->setPowerSetting("ON");
if (has_mode){
this->action = climate::CLIMATE_ACTION_FAN;
updated = true;
}
break;
case climate::CLIMATE_MODE_OFF:
default:
if (has_mode){
hp->setPowerSetting("OFF");
this->action = climate::CLIMATE_ACTION_OFF;
updated = true;
}
break;
}
if (has_temp){
ESP_LOGV(
"control", "Sending target temp: %.1f",
*call.get_target_temperature()
);
hp->setTemperature(*call.get_target_temperature());
this->target_temperature = *call.get_target_temperature();
updated = true;
}
//const char* FAN_MAP[6] = {"AUTO", "QUIET", "1", "2", "3", "4"};
if (call.get_fan_mode().has_value()) {
ESP_LOGV("control", "Requested fan mode is %d", *call.get_fan_mode());
this->fan_mode = *call.get_fan_mode();
switch(*call.get_fan_mode()) {
case climate::CLIMATE_FAN_OFF:
hp->setPowerSetting("OFF");
updated = true;
break;
case climate::CLIMATE_FAN_DIFFUSE:
hp->setFanSpeed("QUIET");
updated = true;
break;
case climate::CLIMATE_FAN_LOW:
hp->setFanSpeed("1");
updated = true;
break;
case climate::CLIMATE_FAN_MEDIUM:
hp->setFanSpeed("2");
updated = true;
break;
case climate::CLIMATE_FAN_MIDDLE:
hp->setFanSpeed("3");
updated = true;
break;
case climate::CLIMATE_FAN_HIGH:
hp->setFanSpeed("4");
updated = true;
break;
case climate::CLIMATE_FAN_ON:
case climate::CLIMATE_FAN_AUTO:
default:
hp->setFanSpeed("AUTO");
updated = true;
break;
}
}
//const char* VANE_MAP[7] = {"AUTO", "1", "2", "3", "4", "5", "SWING"};
if (call.get_swing_mode().has_value()) {
ESP_LOGD(TAG, "control - requested swing mode is %d",
*call.get_swing_mode());
this->swing_mode = *call.get_swing_mode();
switch(*call.get_swing_mode()) {
case climate::CLIMATE_SWING_OFF:
hp->setVaneSetting("AUTO");
hp->setWideVaneSetting("|");
updated = true;
break;
case climate::CLIMATE_SWING_VERTICAL:
hp->setVaneSetting("SWING");
hp->setWideVaneSetting("|");
updated = true;
break;
case climate::CLIMATE_SWING_HORIZONTAL:
hp->setVaneSetting("3");
hp->setWideVaneSetting("SWING");
updated = true;
break;
case climate::CLIMATE_SWING_BOTH:
hp->setVaneSetting("SWING");
hp->setWideVaneSetting("SWING");
updated = true;
break;
default:
ESP_LOGW(TAG, "control - received unsupported swing mode request.");
}
}
ESP_LOGD(TAG, "control - Was HeatPump updated? %s", YESNO(updated));
// send the update back to esphome:
this->publish_state();
// and the heat pump:
hp->update();
}
void MitsubishiHeatPump::hpSettingsChanged() {
heatpumpSettings currentSettings = hp->getSettings();
if (currentSettings.power == NULL) {
/*
* We should always get a valid pointer here once the HeatPump
* component fully initializes. If HeatPump hasn't read the settings
* from the unit yet (hp->connect() doesn't do this, sadly), we'll need
* to punt on the update. Likely not an issue when run in callback
* mode, but that isn't working right yet.
*/
ESP_LOGW(TAG, "Waiting for HeatPump to read the settings the first time.");
esphome::delay(10);
return;
}
/*
* ************ HANDLE POWER AND MODE CHANGES ***********
* https://github.com/geoffdavis/HeatPump/blob/stream/src/HeatPump.h#L125
* const char* POWER_MAP[2] = {"OFF", "ON"};
* const char* MODE_MAP[5] = {"HEAT", "DRY", "COOL", "FAN", "AUTO"};
*/
if (strcmp(currentSettings.power, "ON") == 0) {
if (strcmp(currentSettings.mode, "HEAT") == 0) {
this->mode = climate::CLIMATE_MODE_HEAT;
if (heat_setpoint != currentSettings.temperature) {
heat_setpoint = currentSettings.temperature;
save(currentSettings.temperature, heat_storage);
}
this->action = climate::CLIMATE_ACTION_IDLE;
} else if (strcmp(currentSettings.mode, "DRY") == 0) {
this->mode = climate::CLIMATE_MODE_DRY;
this->action = climate::CLIMATE_ACTION_DRYING;
} else if (strcmp(currentSettings.mode, "COOL") == 0) {
this->mode = climate::CLIMATE_MODE_COOL;
if (cool_setpoint != currentSettings.temperature) {
cool_setpoint = currentSettings.temperature;
save(currentSettings.temperature, cool_storage);
}
this->action = climate::CLIMATE_ACTION_IDLE;
} else if (strcmp(currentSettings.mode, "FAN") == 0) {
this->mode = climate::CLIMATE_MODE_FAN_ONLY;
this->action = climate::CLIMATE_ACTION_FAN;
} else if (strcmp(currentSettings.mode, "AUTO") == 0) {
this->mode = climate::CLIMATE_MODE_HEAT_COOL;
if (auto_setpoint != currentSettings.temperature) {
auto_setpoint = currentSettings.temperature;
save(currentSettings.temperature, auto_storage);
}
this->action = climate::CLIMATE_ACTION_IDLE;
} else {
ESP_LOGW(
TAG,
"Unknown climate mode value %s received from HeatPump",
currentSettings.mode
);
}
} else {
this->mode = climate::CLIMATE_MODE_OFF;
this->action = climate::CLIMATE_ACTION_OFF;
}
ESP_LOGI(TAG, "Climate mode is: %i", this->mode);
/*
* ******* HANDLE FAN CHANGES ********
*
* const char* FAN_MAP[6] = {"AUTO", "QUIET", "1", "2", "3", "4"};
*/
if (strcmp(currentSettings.fan, "QUIET") == 0) {
this->fan_mode = climate::CLIMATE_FAN_DIFFUSE;
} else if (strcmp(currentSettings.fan, "1") == 0) {
this->fan_mode = climate::CLIMATE_FAN_LOW;
} else if (strcmp(currentSettings.fan, "2") == 0) {
this->fan_mode = climate::CLIMATE_FAN_MEDIUM;
} else if (strcmp(currentSettings.fan, "3") == 0) {
this->fan_mode = climate::CLIMATE_FAN_MIDDLE;
} else if (strcmp(currentSettings.fan, "4") == 0) {
this->fan_mode = climate::CLIMATE_FAN_HIGH;
} else { //case "AUTO" or default:
this->fan_mode = climate::CLIMATE_FAN_AUTO;
}
ESP_LOGI(TAG, "Fan mode is: %i", this->fan_mode.value_or(-1));
/* ******** HANDLE MITSUBISHI VANE CHANGES ********
* const char* VANE_MAP[7] = {"AUTO", "1", "2", "3", "4", "5", "SWING"};
*/
if (strcmp(currentSettings.vane, "SWING") == 0 &&
strcmp(currentSettings.wideVane, "SWING") == 0) {
this->swing_mode = climate::CLIMATE_SWING_BOTH;
} else if (strcmp(currentSettings.vane, "SWING") == 0) {
this->swing_mode = climate::CLIMATE_SWING_VERTICAL;
} else if (strcmp(currentSettings.wideVane, "SWING") == 0) {
this->swing_mode = climate::CLIMATE_SWING_HORIZONTAL;
} else {
this->swing_mode = climate::CLIMATE_SWING_OFF;
}
ESP_LOGI(TAG, "Swing mode is: %i", this->swing_mode);
if (strcmp(currentSettings.vane, "SWING") == 0) {
this->update_swing_vertical("swing");
} else if (strcmp(currentSettings.vane, "AUTO") == 0) {
this->update_swing_vertical("auto");
} else if (strcmp(currentSettings.vane, "1") == 0) {
this->update_swing_vertical("up");
} else if (strcmp(currentSettings.vane, "2") == 0) {
this->update_swing_vertical("up_center");
} else if (strcmp(currentSettings.vane, "3") == 0) {
this->update_swing_vertical("center");
} else if (strcmp(currentSettings.vane, "4") == 0) {
this->update_swing_vertical("down_center");
} else if (strcmp(currentSettings.vane, "5") == 0) {
this->update_swing_vertical("down");
}
ESP_LOGI(TAG, "Vertical vane mode is: %s", currentSettings.vane);
if (strcmp(currentSettings.wideVane, "SWING") == 0) {
this->update_swing_horizontal("swing");
} else if (strcmp(currentSettings.wideVane, "<>") == 0) {
this->update_swing_horizontal("auto");
} else if (strcmp(currentSettings.wideVane, "<<") == 0) {
this->update_swing_horizontal("left");
} else if (strcmp(currentSettings.wideVane, "<") == 0) {
this->update_swing_horizontal("left_center");
} else if (strcmp(currentSettings.wideVane, "|") == 0) {
this->update_swing_horizontal("center");
} else if (strcmp(currentSettings.wideVane, ">") == 0) {
this->update_swing_horizontal("right_center");
} else if (strcmp(currentSettings.wideVane, ">>") == 0) {
this->update_swing_horizontal("right");
}
ESP_LOGI(TAG, "Horizontal vane mode is: %s", currentSettings.wideVane);
/*
* ******** HANDLE TARGET TEMPERATURE CHANGES ********
*/
this->target_temperature = currentSettings.temperature;
ESP_LOGI(TAG, "Target temp is: %f", this->target_temperature);
/*
* ******** Publish state back to ESPHome. ********
*/
this->publish_state();
}
/**
* Report changes in the current temperature sensed by the HeatPump.
*/
void MitsubishiHeatPump::hpStatusChanged(heatpumpStatus currentStatus) {
this->current_temperature = currentStatus.roomTemperature;
switch (this->mode) {
case climate::CLIMATE_MODE_HEAT:
if (currentStatus.operating) {
this->action = climate::CLIMATE_ACTION_HEATING;
}
else {
this->action = climate::CLIMATE_ACTION_IDLE;
}
break;
case climate::CLIMATE_MODE_COOL:
if (currentStatus.operating) {
this->action = climate::CLIMATE_ACTION_COOLING;
}
else {
this->action = climate::CLIMATE_ACTION_IDLE;
}
break;
case climate::CLIMATE_MODE_HEAT_COOL:
this->action = climate::CLIMATE_ACTION_IDLE;
if (currentStatus.operating) {
if (this->current_temperature > this->target_temperature) {
this->action = climate::CLIMATE_ACTION_COOLING;
} else if (this->current_temperature < this->target_temperature) {
this->action = climate::CLIMATE_ACTION_HEATING;
}
}
break;
case climate::CLIMATE_MODE_DRY:
if (currentStatus.operating) {
this->action = climate::CLIMATE_ACTION_DRYING;
}
else {
this->action = climate::CLIMATE_ACTION_IDLE;
}
break;
case climate::CLIMATE_MODE_FAN_ONLY:
this->action = climate::CLIMATE_ACTION_FAN;
break;
default:
this->action = climate::CLIMATE_ACTION_OFF;
}
this->operating_ = currentStatus.operating;
this->publish_state();
}
void MitsubishiHeatPump::set_remote_temperature(float temp) {
ESP_LOGD(TAG, "Setting remote temp: %.1f", temp);
if (temp > 0) {
last_remote_temperature_sensor_update_ =
std::chrono::steady_clock::now();
} else {
last_remote_temperature_sensor_update_.reset();
}
this->hp->setRemoteTemperature(temp);
}
void MitsubishiHeatPump::ping() {
ESP_LOGD(TAG, "Ping request received");
last_ping_request_ = std::chrono::steady_clock::now();
}
void MitsubishiHeatPump::set_remote_operating_timeout_minutes(int minutes) {
ESP_LOGD(TAG, "Setting remote operating timeout time: %d minutes", minutes);
remote_operating_timeout_ = std::chrono::minutes(minutes);
}
void MitsubishiHeatPump::set_remote_idle_timeout_minutes(int minutes) {
ESP_LOGD(TAG, "Setting remote idle timeout time: %d minutes", minutes);
remote_idle_timeout_ = std::chrono::minutes(minutes);
}
void MitsubishiHeatPump::set_remote_ping_timeout_minutes(int minutes) {
ESP_LOGD(TAG, "Setting remote ping timeout time: %d minutes", minutes);
remote_ping_timeout_ = std::chrono::minutes(minutes);
}
void MitsubishiHeatPump::enforce_remote_temperature_sensor_timeout() {
// Handle ping timeouts.
if (remote_ping_timeout_.has_value() && last_ping_request_.has_value()) {
auto time_since_last_ping =
std::chrono::steady_clock::now() - last_ping_request_.value();
if(time_since_last_ping > remote_ping_timeout_.value()) {
ESP_LOGW(TAG, "Ping timeout.");
this->set_remote_temperature(0);
last_ping_request_.reset();
return;
}
}
// Handle set_remote_temperature timeouts.
auto remote_set_temperature_timeout =
this->operating_ ? remote_operating_timeout_ : remote_idle_timeout_;
if (remote_set_temperature_timeout.has_value() &&
last_remote_temperature_sensor_update_.has_value()) {
auto time_since_last_temperature_update =
std::chrono::steady_clock::now() - last_remote_temperature_sensor_update_.value();
if (time_since_last_temperature_update > remote_set_temperature_timeout.value()) {
ESP_LOGW(TAG, "Set remote temperature timeout, operating=%d", this->operating_);
this->set_remote_temperature(0);
return;
}
}
}
void MitsubishiHeatPump::setup() {
// This will be called by App.setup()
this->banner();
ESP_LOGCONFIG(TAG, "Setting up UART...");
if (!this->get_hw_serial_()) {
ESP_LOGCONFIG(
TAG,
"No HardwareSerial was provided. "
"Software serial ports are unsupported by this component."
);
this->mark_failed();
return;
}
this->check_logger_conflict_();
ESP_LOGCONFIG(TAG, "Intializing new HeatPump object.");
this->hp = new HeatPump();
this->current_temperature = NAN;
this->target_temperature = NAN;
this->fan_mode = climate::CLIMATE_FAN_OFF;
this->swing_mode = climate::CLIMATE_SWING_OFF;
this->vertical_swing_state_ = "auto";
this->horizontal_swing_state_ = "auto";
#ifdef USE_CALLBACKS
hp->setSettingsChangedCallback(
[this]() {
this->hpSettingsChanged();
}
);
hp->setStatusChangedCallback(
[this](heatpumpStatus currentStatus) {
this->hpStatusChanged(currentStatus);
}
);
#endif
ESP_LOGCONFIG(
TAG,
"hw_serial(%p) is &Serial(%p)? %s",
this->get_hw_serial_(),
&Serial,
YESNO((void *)this->get_hw_serial_() == (void *)&Serial)
);
ESP_LOGCONFIG(TAG, "Calling hp->connect(%p)", this->get_hw_serial_());
if (hp->connect(this->get_hw_serial_(), this->baud_, this->rx_pin_, this->tx_pin_)) {
hp->sync();
}
else {
ESP_LOGCONFIG(
TAG,
"Connection to HeatPump failed."
" Marking MitsubishiHeatPump component as failed."
);
this->mark_failed();
}
// create various setpoint persistence:
cool_storage = global_preferences->make_preference<uint8_t>(this->get_object_id_hash() + 1);
heat_storage = global_preferences->make_preference<uint8_t>(this->get_object_id_hash() + 2);
auto_storage = global_preferences->make_preference<uint8_t>(this->get_object_id_hash() + 3);
// load values from storage:
cool_setpoint = load(cool_storage);
heat_setpoint = load(heat_storage);
auto_setpoint = load(auto_storage);
this->dump_config();
}
/**
* The ESP only has a few bytes of rtc storage, so instead
* of storing floats directly, we'll store the number of
* TEMPERATURE_STEPs from MIN_TEMPERATURE.
**/
void MitsubishiHeatPump::save(float value, ESPPreferenceObject& storage) {
uint8_t steps = (value - ESPMHP_MIN_TEMPERATURE) / ESPMHP_TEMPERATURE_STEP;
storage.save(&steps);
}
optional<float> MitsubishiHeatPump::load(ESPPreferenceObject& storage) {
uint8_t steps = 0;
if (!storage.load(&steps)) {
return {};
}
return ESPMHP_MIN_TEMPERATURE + (steps * ESPMHP_TEMPERATURE_STEP);
}
void MitsubishiHeatPump::dump_config() {
this->banner();
ESP_LOGI(TAG, " Supports HEAT: %s", YESNO(true));
ESP_LOGI(TAG, " Supports COOL: %s", YESNO(true));
ESP_LOGI(TAG, " Supports AWAY mode: %s", YESNO(false));
ESP_LOGI(TAG, " Saved heat: %.1f", heat_setpoint.value_or(-1));
ESP_LOGI(TAG, " Saved cool: %.1f", cool_setpoint.value_or(-1));
ESP_LOGI(TAG, " Saved auto: %.1f", auto_setpoint.value_or(-1));
}
void MitsubishiHeatPump::dump_state() {
LOG_CLIMATE("", "MitsubishiHeatPump Climate", this);
ESP_LOGI(TAG, "HELLO");
}