diff --git a/assets/voxygen/shaders/figure-frag.glsl b/assets/voxygen/shaders/figure-frag.glsl index 9e98c6fef7..e02abca473 100644 --- a/assets/voxygen/shaders/figure-frag.glsl +++ b/assets/voxygen/shaders/figure-frag.glsl @@ -6,8 +6,8 @@ in vec3 f_pos; in vec3 f_col; in float f_ao; flat in vec3 f_norm; -in float f_alt; -in vec4 f_shadow; +// in float f_alt; +// in vec4 f_shadow; layout (std140) uniform u_locals { @@ -45,6 +45,8 @@ void main() { // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ + float f_alt = alt_at(f_pos.xy); + vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). @@ -58,7 +60,11 @@ void main() { vec3 surf_color = /*srgb_to_linear*/(model_col.rgb * f_col); float alpha = 1.0; const float n2 = 1.01; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); diff --git a/assets/voxygen/shaders/figure-vert.glsl b/assets/voxygen/shaders/figure-vert.glsl index 62c41a0042..d6bf3bafca 100644 --- a/assets/voxygen/shaders/figure-vert.glsl +++ b/assets/voxygen/shaders/figure-vert.glsl @@ -31,8 +31,8 @@ out vec3 f_pos; out vec3 f_col; out float f_ao; flat out vec3 f_norm; -out float f_alt; -out vec4 f_shadow; +// out float f_alt; +// out vec4 f_shadow; void main() { // Pre-calculate bone matrix @@ -53,8 +53,8 @@ void main() { ).xyz); // Also precalculate shadow texture and estimated terrain altitude. - f_alt = alt_at(f_pos.xy); - f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); + // f_alt = alt_at(f_pos.xy); + // f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); gl_Position = all_mat * vec4(f_pos, 1); gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); diff --git a/assets/voxygen/shaders/fluid-frag/cheap.glsl b/assets/voxygen/shaders/fluid-frag/cheap.glsl index db0ba83378..9de71a3925 100644 --- a/assets/voxygen/shaders/fluid-frag/cheap.glsl +++ b/assets/voxygen/shaders/fluid-frag/cheap.glsl @@ -8,6 +8,7 @@ flat in uint f_pos_norm; in vec3 f_col; in float f_light; + layout (std140) uniform u_locals { vec3 model_offs; @@ -42,13 +43,21 @@ void main() { vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); - float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); - float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); + float f_alt = alt_at(f_pos.xy); + vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); + float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); + float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); + // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); + // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; const float alpha = 0.255/* / 4.0 / sqrt(2.0)*/; const float n2 = 1.3325; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); diff --git a/assets/voxygen/shaders/fluid-frag/shiny.glsl b/assets/voxygen/shaders/fluid-frag/shiny.glsl index 99f0cf445f..979b6b7b62 100644 --- a/assets/voxygen/shaders/fluid-frag/shiny.glsl +++ b/assets/voxygen/shaders/fluid-frag/shiny.glsl @@ -112,13 +112,21 @@ void main() { vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); - float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); - float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); + float f_alt = alt_at(f_pos.xy); + vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); + float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); + float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); + // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); + // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; const float alpha = 0.255/*/ / 4.0*//* / 4.0 / sqrt(2.0)*/; const float n2 = 1.3325; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); @@ -143,7 +151,7 @@ void main() { lights_at(f_pos, norm, view_dir, vec3(0.0), vec3(0.0), /*vec3(1.0)*/k_s, alpha, dump_light, specular_light_point); diffuse_light_point -= specular_light_point; - float reflected_light_point = length(diffuse_light_point/*.r*/) + f_light * point_shadow; + float reflected_light_point = /*length*/(diffuse_light_point.r) + f_light * point_shadow; reflected_light += reflect_color * k_d * (diffuse_light_point + f_light * point_shadow * shade_frac) + reflect_color * specular_light_point; /* vec3 point_light = light_at(f_pos, norm); emitted_light += point_light; diff --git a/assets/voxygen/shaders/fluid-vert.glsl b/assets/voxygen/shaders/fluid-vert.glsl index ea30688130..227fd646be 100644 --- a/assets/voxygen/shaders/fluid-vert.glsl +++ b/assets/voxygen/shaders/fluid-vert.glsl @@ -14,7 +14,6 @@ uniform u_locals { out vec3 f_pos; flat out uint f_pos_norm; -flat out vec3 f_norm; out vec3 f_col; out float f_light; diff --git a/assets/voxygen/shaders/include/lod.glsl b/assets/voxygen/shaders/include/lod.glsl index fd8be54b35..0504165909 100644 --- a/assets/voxygen/shaders/include/lod.glsl +++ b/assets/voxygen/shaders/include/lod.glsl @@ -194,17 +194,23 @@ vec2 splay(vec2 pos) { vec3 lod_norm(vec2 pos) { const float SAMPLE_W = 32; - float altx0 = alt_at(pos + vec2(-1, 0) * SAMPLE_W); - float altx1 = alt_at(pos + vec2(1, 0) * SAMPLE_W); - float alty0 = alt_at(pos + vec2(0, -1) * SAMPLE_W); - float alty1 = alt_at(pos + vec2(0, 1) * SAMPLE_W); + float altx0 = alt_at(pos + vec2(-1.0, 0) * SAMPLE_W); + float altx1 = alt_at(pos + vec2(1.0, 0) * SAMPLE_W); + float alty0 = alt_at(pos + vec2(0, -1.0) * SAMPLE_W); + float alty1 = alt_at(pos + vec2(0, 1.0) * SAMPLE_W); float slope = abs(altx1 - altx0) + abs(alty0 - alty1); - return normalize(vec3( - (altx0 - altx1) / SAMPLE_W, - (alty0 - alty1) / SAMPLE_W, - SAMPLE_W / (slope + 0.00001) // Avoid NaN - )); + vec3 norm = normalize(cross( + vec3(2.0 * SAMPLE_W, 0.0, altx1 - altx0), + vec3(0.0, 2.0 * SAMPLE_W, alty1 - alty0) + )); + /* vec3 norm = normalize(vec3( + (altx0 - altx1) / (2.0 * SAMPLE_W), + (alty0 - alty1) / (2.0 * SAMPLE_W), + (2.0 * SAMPLE_W) / (slope + 0.00001) // Avoid NaN + )); */ + + return faceforward(norm, vec3(0.0, 0.0, -1.0), norm); } vec3 lod_pos(vec2 v_pos, vec2 focus_pos) { diff --git a/assets/voxygen/shaders/include/sky.glsl b/assets/voxygen/shaders/include/sky.glsl index 3c9d7f0d39..acfb588987 100644 --- a/assets/voxygen/shaders/include/sky.glsl +++ b/assets/voxygen/shaders/include/sky.glsl @@ -27,6 +27,7 @@ vec3 get_sun_dir(float time_of_day) { const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); float sun_angle_rad = time_of_day * TIME_FACTOR; + // return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); } @@ -34,6 +35,13 @@ vec3 get_moon_dir(float time_of_day) { const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); float moon_angle_rad = time_of_day * TIME_FACTOR; + // -cos((60+60*4)/360*2*pi)-0.5 = 0 + // -cos((60+60*5)/360*2*pi)-0.5 = -0.5 + // -cos((60+60*6)/360*2*pi)-0.5 = 0 + // + // i.e. moon out from (60*5)/360*24 = 20:00 to (60*7/360*24) = 28:00 = 04:00. + // + // Then sun out from 04:00 to 20:00. return normalize(-vec3(sin(moon_angle_rad), 0.0, cos(moon_angle_rad) - 0.5)); } @@ -130,14 +138,93 @@ float get_sun_diffuse2(vec3 norm, vec3 sun_dir, vec3 moon_dir, vec3 dir, vec3 k_ // // HdRd radiation should come in at angle normal to us. // const float H_d = 0.23; - // Assuming we are on the equator: - // R_b = (cos(h)cos(-β) / cos(h)) = cos(-β), the angle from horizontal. + // + // Let β be the angle from horizontal + // (for objects exposed to the sky, where positive when sloping towards south and negative when sloping towards north): + // + // sin β = (north ⋅ norm) / |north||norm| + // = dot(vec3(0, 1, 0), norm) + // + // cos β = sqrt(1.0 - dot(vec3(0, 1, 0), norm)) + // + // Let h be the hour angle (180/0.0 at midnight, 90/1.0 at dawn, 0/0.0 at noon, -90/-1.0 at dusk, -180 at midnight/0.0): + // cos h = (midnight ⋅ -light_dir) / |midnight||-light_dir| + // = (noon ⋅ light_dir) / |noon||light_dir| + // = dot(vec3(0, 0, 1), light_dir) + // + // Let φ be the latitude at this point. 0 at equator, -90 at south pole / 90 at north pole. + // + // Let δ be the solar declination (angular distance of the sun's rays north [or south[] + // of the equator), i.e. the angle made by the line joining the centers of the sun and Earth with its projection on the + // equatorial plane. Caused by axial tilt, and 0 at equinoxes. Normally varies between -23.45 and 23.45 degrees. + // + // Let α (the solar altitude / altitud3 angle) be the vertical angle between the projection of the sun's rays on the + // horizontal plane and the direction of the sun's rays (passing through a point). + // + // Let Θ_z be the vertical angle between sun's rays and a line perpendicular to the horizontal plane through a point, + // i.e. + // + // Θ_z = (π/2) - α + // + // i.e. cos Θ_z = sin α and + // cos α = sin Θ_z + // + // Let γ_s be the horizontal angle measured from north to the horizontal projection of the sun's rays (positive when + // measured westwise). + // + // cos Θ_z = cos φ cos h cos δ + sin φ sin δ + // cos γ_s = sec α (cos φ sin δ - cos δ sin φ cos h) + // = (1 / √(1 - cos² Θ_z)) (cos φ sin δ - cos δ sin φ cos h) + // sin γ_s = sec α cos δ sin h + // = (1 / cos α) cos δ sin h + // = (1 / sin Θ_z) cos δ sin h + // = (1 / √(1 - cos² Θ_z)) cos δ sin h + // + // R_b = (sin(δ)sin(φ - β) + cos(δ)cos(h)cos(φ - β))/(sin(δ)sin(φ) + cos(δ)cos(h)cos(φ)) + // + // Assuming we are on the equator (i.e. φ = 0), and there is no axial tilt or we are at an equinox (i.e. δ = 0): + // + // cos Θ_z = 1 * cos h * 1 + 0 * 0 = cos h + // cos γ_s = (1 / √(1 - cos² h)) (1 * 0 - 1 * 0 * cos h) + // = (1 / √(1 - cos² h)) * 0 + // = 0 + // sin γ_s = (1 / √(1 - cos² h)) * sin h + // = sin h / sin h + // = 1 + // + // R_b = (0 * sin(0 - β) + 1 * cos(h) * cos(0 - β))/(0 * 0 + 1 * cos(h) * 1) + // = (cos(h)cos(-β)) / cos(H) + // = cos(-β), the angle from horizontal. + // // NOTE: cos(-β) = cos(β). - float cos_sun = dot(norm, -sun_dir); - float cos_moon = dot(norm, -moon_dir); - vec3 light_frac = /*vec3(1.0)*//*H_d * */ - SUN_AMBIANCE * /*sun_light*/sun_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_sun) * 0.5), vec3(k_s * (1.0 - cos_sun) * 0.5), alpha) + - MOON_AMBIANCE * /*sun_light*/moon_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_moon) * 0.5), vec3(k_s * (1.0 - cos_moon) * 0.5), alpha); + // float cos_sun = dot(norm, /*-sun_dir*/vec3(0, 0, 1)); + // float cos_moon = dot(norm, -moon_dir); + // + // Let ζ = diffuse reflectance of surrounding ground for solar radiation, then we have + // + // R_d = (1 + cos β) / 2 + // R_r = ζ (1 - cos β) / 2 + // + // H_t = H_b R_b + H_d R_d + (H_b + H_d) R_r + float sin_beta = dot(vec3(0, 1, 0), norm); + float R_b = sqrt(1.0 - sin_beta * sin_beta); + // Rough estimate of diffuse reflectance of rest of ground. + // NOTE: zeta should be close to 0.7 with snow cover, 0.2 normally? Maybe? + vec3 zeta = max(vec3(0.2), k_d * (1.0 - k_s));//vec3(0.2);// k_d * (1.0 - k_s); + float R_d = (1 + R_b) * 0.5; + vec3 R_r = zeta * (1.0 - R_b) * 0.5; + // + // We can break this down into: + // H_t_b = H_b * (R_b + R_r) = light_intensity * (R_b + R_r) + // H_t_r = H_d * (R_d + R_r) = light_intensity * (R_d + R_r) + vec3 R_t_b = R_b + R_r; + vec3 R_t_r = R_d + R_r; + + // vec3 half_vec = normalize(-norm + dir); + vec3 light_frac = R_t_b * (sun_chroma * SUN_AMBIANCE + moon_chroma * MOON_AMBIANCE) * light_reflection_factor(norm, norm, /*-norm*/-norm, /*k_d*/k_d * (1.0 - k_s), /*k_s*/vec3(0.0), alpha); + // vec3 light_frac = /*vec3(1.0)*//*H_d * */ + // SUN_AMBIANCE * /*sun_light*/sun_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_sun) * 0.5), vec3(k_s * (1.0 - cos_sun) * 0.5), alpha) + + // MOON_AMBIANCE * /*sun_light*/moon_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_moon) * 0.5), vec3(k_s * (1.0 - cos_moon) * 0.5), alpha); /* float NLsun = max(dot(-norm, sun_dir), 0); float NLmoon = max(dot(-norm, moon_dir), 0); vec3 E = -dir; */ @@ -149,15 +236,16 @@ float get_sun_diffuse2(vec3 norm, vec3 sun_dir, vec3 moon_dir, vec3 dir, vec3 k_ // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5); // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5); - - emitted_light = k_a * light_frac * (/*ambient_sides + */SUN_AMBIANCE * /*sun_light*/sun_chroma + /*vec3(moon_light)*/MOON_AMBIANCE * moon_chroma) + PERSISTENT_AMBIANCE; + emitted_light = k_a * light_frac + PERSISTENT_AMBIANCE; + // emitted_light = k_a * light_frac * (/*ambient_sides + */SUN_AMBIANCE * /*sun_light*/sun_chroma + /*vec3(moon_light)*/MOON_AMBIANCE * moon_chroma) + PERSISTENT_AMBIANCE; // TODO: Add shadows. - reflected_light = + reflected_light = R_t_r * ( (1.0 - SUN_AMBIANCE) * sun_chroma * (light_reflection_factor(norm, dir, sun_dir, k_d, k_s, alpha) /*+ light_reflection_factor(norm, dir, normalize(sun_dir + vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha) + light_reflection_factor(norm, dir, normalize(sun_dir - vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha)*/) + - (1.0 - MOON_AMBIANCE) * moon_chroma * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha); + (1.0 - MOON_AMBIANCE) * moon_chroma * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha) + ); /* light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE; diffuse_light = @@ -322,16 +410,17 @@ vec3 illuminate(/*vec3 max_light, */vec3 emitted, vec3 reflected) { // Tone mapped value. // vec3 T = /*color*//*lum*/color;//normalize(color) * lum / (1.0 + lum); - float alpha = 2.0;// 2.0; + float alpha = 2.0; float T = 1.0 - exp(-alpha * lum);//lum / (1.0 + lum); // float T = lum; // Heuristic desaturation - // float s = 0.5; - vec3 col_adjusted = (color / lum); - // vec3 c = pow(color / lum, vec3(s)) * T; + const float s = 0.8; + vec3 col_adjusted = lum == 0.0 ? vec3(0.0) : color / lum; + // vec3 c = pow(col_adjusted, vec3(s)) * T; + // vec3 c = col_adjusted * T; // vec3 c = sqrt(col_adjusted) * T; - vec3 c = col_adjusted * col_adjusted * T; + vec3 c = /*col_adjusted * */col_adjusted * T; return c; // float sum_col = color.r + color.g + color.b; diff --git a/assets/voxygen/shaders/lod-terrain-frag.glsl b/assets/voxygen/shaders/lod-terrain-frag.glsl index 6b0abc4c6a..c5dfbdc873 100644 --- a/assets/voxygen/shaders/lod-terrain-frag.glsl +++ b/assets/voxygen/shaders/lod-terrain-frag.glsl @@ -53,11 +53,13 @@ void main() { vec3 moon_dir = get_moon_dir(time_of_day.x); // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); - /* float my_alt = alt_at(f_pos.xy); + float my_alt = f_pos.z;//alt_at(f_pos.xy); + vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); + // float my_alt = alt_at(f_pos.xy); float sun_shade_frac = horizon_at2(f_shadow, my_alt, f_pos, sun_dir); - float moon_shade_frac = horizon_at2(f_shadow, my_alt, f_pos, moon_dir); */ - float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); - float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); + float moon_shade_frac = horizon_at2(f_shadow, my_alt, f_pos, moon_dir); + // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); + // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); @@ -69,7 +71,11 @@ void main() { float alpha = 1.0;//sqrt(2.0); const float n2 = 1.01; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < my_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 emitted_light, reflected_light; // Use f_norm here for better shadows. diff --git a/assets/voxygen/shaders/player-shadow-frag.glsl b/assets/voxygen/shaders/player-shadow-frag.glsl index 25bd05ed0a..4427e22f5f 100644 --- a/assets/voxygen/shaders/player-shadow-frag.glsl +++ b/assets/voxygen/shaders/player-shadow-frag.glsl @@ -5,6 +5,9 @@ in vec3 f_pos; in vec3 f_col; flat in vec3 f_norm; +in float f_ao; +in float f_alt; +in vec4 f_shadow; layout (std140) uniform u_locals { @@ -42,4 +45,4 @@ void main() { } tgt_color = vec4(0.0,0.0,0.0, 1.0); -} \ No newline at end of file +} diff --git a/assets/voxygen/shaders/sprite-frag.glsl b/assets/voxygen/shaders/sprite-frag.glsl index 6d04498611..6672ae80e5 100644 --- a/assets/voxygen/shaders/sprite-frag.glsl +++ b/assets/voxygen/shaders/sprite-frag.glsl @@ -27,8 +27,12 @@ void main() { vec3 moon_dir = get_moon_dir(time_of_day.x); // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); - float sun_shade_frac = horizon_at(f_pos, sun_dir); - float moon_shade_frac = horizon_at(f_pos, moon_dir); + float f_alt = alt_at(f_pos.xy); + vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); + float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); + float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); + // float sun_shade_frac = horizon_at(f_pos, sun_dir); + // float moon_shade_frac = horizon_at(f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); @@ -40,7 +44,11 @@ void main() { vec3 surf_color = /*srgb_to_linear*//*linear_to_srgb*/(f_col); float alpha = 1.0; const float n2 = 1.01; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); diff --git a/assets/voxygen/shaders/terrain-frag.glsl b/assets/voxygen/shaders/terrain-frag.glsl index 94fb4bac0c..0bc25cd8d4 100644 --- a/assets/voxygen/shaders/terrain-frag.glsl +++ b/assets/voxygen/shaders/terrain-frag.glsl @@ -41,6 +41,8 @@ void main() { // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ + // float f_alt = alt_at(f_pos.xy); + // vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). @@ -53,8 +55,13 @@ void main() { vec3 surf_color = /*srgb_to_linear*/(f_col); float alpha = 1.0; + // TODO: Possibly angle with water surface into account? Since we can basically assume it's horizontal. const float n2 = 1.01; - const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); + const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); + const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); + const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); + float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s);