struct Light { vec4 light_pos; vec4 light_col; }; layout (std140) uniform u_lights { Light lights[32]; }; struct Shadow { vec4 shadow_pos_radius; }; layout (std140) uniform u_shadows { Shadow shadows[24]; }; #include vec3 illuminate(vec3 color, vec3 light, vec3 diffuse, vec3 ambience) { float avg_col = (color.r + color.g + color.b) / 3.0; return ((color - avg_col) * light + (diffuse + ambience) * avg_col) * (diffuse + ambience); } float attenuation_strength(vec3 rpos) { // This is not how light attenuation works at all, but it produces visually pleasing and mechanically useful properties float d2 = rpos.x * rpos.x + rpos.y * rpos.y + rpos.z * rpos.z; return max(2.0 / pow(d2 + 10, 0.35) - pow(d2 / 50000.0, 0.8), 0.0); } vec3 light_at(vec3 wpos, vec3 wnorm) { const float LIGHT_AMBIENCE = 0.025; vec3 light = vec3(0); for (uint i = 0u; i < light_shadow_count.x; i ++) { // Only access the array once Light L = lights[i]; vec3 light_pos = L.light_pos.xyz; // Pre-calculate difference between light and fragment vec3 difference = light_pos - wpos; float strength = attenuation_strength(difference); // Multiply the vec3 only once vec3 color = srgb_to_linear(L.light_col.rgb) * (strength * L.light_col.a); light += color * (max(0, max(dot(normalize(difference), wnorm), 0.15)) + LIGHT_AMBIENCE); } return light; } float shadow_at(vec3 wpos, vec3 wnorm) { float shadow = 1.0; for (uint i = 0u; i < light_shadow_count.y; i ++) { // Only access the array once Shadow S = shadows[i]; vec3 shadow_pos = S.shadow_pos_radius.xyz; float radius = S.shadow_pos_radius.w; vec3 diff = shadow_pos - wpos; if (diff.z >= 0.0) { diff.z = -sign(diff.z) * diff.z * 0.1; } float shade = max(pow(diff.x * diff.x + diff.y * diff.y + diff.z * diff.z, 0.25) / pow(radius * radius * 0.5, 0.25), 0.5); shadow = min(shadow, shade); } return min(shadow, 1.0); }