#version 420 core #include #define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION) #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN // Must come before includes #define IS_POSTPROCESS #include // Note: The sampler uniform is declared here because it differs for MSAA #include #include #include #include // This *MUST* come after `cloud.glsl`: it contains a function that depends on `cloud.glsl` when clouds are enabled #include layout(set = 2, binding = 0) uniform texture2D t_src_color; layout(set = 2, binding = 1) uniform sampler s_src_color; layout(set = 2, binding = 2) uniform texture2D t_src_depth; layout(set = 2, binding = 3) uniform sampler s_src_depth; layout(location = 0) in vec2 uv; layout (std140, set = 2, binding = 4) uniform u_locals { mat4 all_mat_inv; }; layout(location = 0) out vec4 tgt_color; vec3 wpos_at(vec2 uv) { float buf_depth = texture(sampler2D(t_src_depth, s_src_depth), uv).x; vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0); vec4 view_space = all_mat_inv * clip_space; view_space /= view_space.w; if (buf_depth == 0.0) { vec3 direction = normalize(view_space.xyz); return direction.xyz * 524288.0625 + cam_pos.xyz; } else { return view_space.xyz; } } void main() { vec4 color = texture(sampler2D(t_src_color, s_src_color), uv); #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(color.rgb, 1); return; #endif vec3 wpos = wpos_at(uv); float dist = distance(wpos, cam_pos.xyz); vec3 dir = (wpos - cam_pos.xyz) / dist; // Apply clouds float cloud_blend = 1.0; if (color.a < 1.0) { cloud_blend = 1.0 - color.a; dist = DIST_CAP; } color.rgb = mix(color.rgb, get_cloud_color(color.rgb, dir, cam_pos.xyz, time_of_day.x, dist, 1.0), cloud_blend); #if (CLOUD_MODE == CLOUD_MODE_NONE) color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb); #else if (medium.x == MEDIUM_AIR && rain_density > 0.001) { vec3 cam_wpos = cam_pos.xyz + focus_off.xyz; vec3 adjusted_dir = (vec4(dir, 0) * rain_dir_mat).xyz; vec2 dir2d = adjusted_dir.xy; vec3 rorigin = cam_pos.xyz + focus_off.xyz + 0.5; vec3 rpos = vec3(0.0); float t = 0.0; const float PLANCK = 0.01; for (int i = 0; i < 14 /* log2(64) * 2 + 2 */; i ++) { float scale = min(pow(2, ceil(t / 2.0)), 32); vec2 deltas = (step(vec2(0), dir2d) - fract(rpos.xy / scale + 100.0)) / dir2d; float jump = max(min(deltas.x, deltas.y) * scale, PLANCK); t += jump; #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) if (t >= 64.0) { break; } #else if (t >= 16.0) { break; } #endif rpos = rorigin + adjusted_dir * t; vec2 diff = abs(round(rpos.xy) - rpos.xy); vec3 wall_pos = vec3((diff.x > diff.y) ? rpos.xy : rpos.yx, rpos.z + integrated_rain_vel); wall_pos.xz *= vec2(4, 0.3); wall_pos.z += hash_two(uvec2(wall_pos.xy + vec2(0, 0.5))); float depth_adjust = fract(hash_two(uvec2(wall_pos.xz) + 500u)); float wpos_dist = t - jump * depth_adjust; vec3 wpos = cam_pos.xyz + dir * wpos_dist; if (wpos_dist > dist) { break; } if (length((fract(wall_pos.xz) - 0.5)) < 0.1 + pow(max(0.0, wpos_dist - (dist - 0.25)) / 0.25, 4.0) * 0.2) { float density = rain_density * rain_occlusion_at(wpos); if (fract(hash_two(uvec2(wall_pos.xz) + 1000u)) >= density) { continue; } float alpha = 0.5 * clamp((wpos_dist - 1.0) * 0.5, 0.0, 1.0); float light = dot(color.rgb, vec3(1)) + 0.05 + (get_sun_brightness() + get_moon_brightness()) * 0.2; color.rgb = mix(color.rgb, vec3(0.3, 0.35, 0.5) * light, alpha); } } } #endif tgt_color = vec4(color.rgb, 1); }