#include #include const float CLOUD_THRESHOLD = 0.27; const float CLOUD_SCALE = 5.0; const float CLOUD_DENSITY = 150.0; vec2 get_cloud_heights(vec2 pos) { const float CLOUD_HALF_WIDTH = 300; const float CLOUD_HEIGHT_VARIATION = 1500.0; float cloud_alt = CLOUD_AVG_ALT + (texture(t_noise, pos.xy * 0.00005).x - 0.5) * CLOUD_HEIGHT_VARIATION; #if (CLOUD_MODE > CLOUD_MODE_MINIMAL) cloud_alt += (texture(t_noise, pos.xy * 0.001).x - 0.5) * 0.1 * CLOUD_HEIGHT_VARIATION; #endif return vec2(cloud_alt, CLOUD_HALF_WIDTH); } float emission_strength = clamp((sin(time_of_day.x / (3600 * 24)) - 0.8) / 0.1, 0, 1); // Returns vec4(r, g, b, density) vec4 cloud_at(vec3 pos, float dist, out vec3 emission) { // Natural attenuation of air (air naturally attenuates light that passes through it) // Simulate the atmosphere thinning as you get higher. Not physically accurate, but then // it can't be since Veloren's world is flat, not spherical. float air = 0.00035 * clamp((10000.0 - pos.z) / 7000, 0, 1); // Mist sits close to the ground in valleys (TODO: use base_alt to put it closer to water) float mist_min_alt = 0.5; #if (CLOUD_MODE > CLOUD_MODE_LOW) mist_min_alt = (texture(t_noise, pos.xy * 0.00015).x - 0.5) * 1.25 + 0.5; #endif mist_min_alt *= 250; const float MIST_FADE_HEIGHT = 500; float mist = 0.00125 * pow(clamp(1.0 - (pos.z - mist_min_alt) / MIST_FADE_HEIGHT, 0.0, 1), 4.0) / (1.0 + pow(1.0 + dist / 20000.0, 2.0)); vec3 wind_pos = vec3(pos.xy + wind_offset, pos.z); // Clouds float cloud_tendency = cloud_tendency_at(pos.xy); float cloud = 0; vec2 cloud_attr = get_cloud_heights(wind_pos.xy); float cloud_factor = 0.0; float turb_noise = 0.0; float sun_access = 0.0; float moon_access = 0.0; float cloud_sun_access = 0.0; float cloud_moon_access = 0.0; // This is a silly optimisation but it actually nets us a fair few fps by skipping quite a few expensive calcs if (cloud_tendency > 0 || mist > 0.0) { // Turbulence (small variations in clouds/mist) const float turb_speed = -1.0; // Turbulence goes the opposite way vec3 turb_offset = vec3(1, 1, 0) * time_of_day.x * turb_speed; #if (CLOUD_MODE >= CLOUD_MODE_MINIMAL) turb_noise = noise_3d((wind_pos + turb_offset) * 0.001) - 0.5; #endif #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) turb_noise += (noise_3d((wind_pos + turb_offset * 0.3) * 0.004) - 0.5) * 0.35; #endif #if (CLOUD_MODE >= CLOUD_MODE_HIGH) turb_noise += (noise_3d((wind_pos + turb_offset * 0.3) * 0.01) - 0.5) * 0.125; #endif mist *= 1.0 + turb_noise; cloud_factor = 0.25 * (1.0 - pow(min(abs(pos.z - cloud_attr.x) / (cloud_attr.y * pow(max(cloud_tendency * 20.0, 0), 0.5)), 1.0), 1.0)); float cloud_flat = min(cloud_tendency, 0.07) * 0.05; cloud_flat *= (1.0 + turb_noise * 7.0 * max(0, 1.0 - cloud_factor * 5)); cloud = cloud_flat * pow(cloud_factor, 2) * 20; // What proportion of sunlight is *not* being blocked by nearby cloud? (approximation) cloud_sun_access = clamp((pos.z - cloud_attr.x + turb_noise * 250.0) * 0.002 + 0.35, 0, 1); // Since we're assuming the sun/moon is always above (not always correct) it's the same for the moon cloud_moon_access = sun_access; #if (CLOUD_MODE >= CLOUD_MODE_HIGH) // Try to calculate a reasonable approximation of the cloud normal float cloud_tendency_x = cloud_tendency_at(pos.xy + vec2(100, 0)); float cloud_tendency_y = cloud_tendency_at(pos.xy + vec2(0, 100)); vec3 cloud_norm = vec3( (cloud_tendency - cloud_tendency_x) * 4, (cloud_tendency - cloud_tendency_y) * 4, (pos.z - cloud_attr.x) / 250 + turb_noise + 0.5 ); cloud_sun_access = mix(max(dot(-sun_dir.xyz, cloud_norm) + 0.0, 0.025), cloud_sun_access, 0.25); cloud_moon_access = mix(max(dot(-moon_dir.xyz, cloud_norm) + 0.35, 0.025), cloud_moon_access, 0.25); #endif } float mist_sun_access = 0.5 + turb_noise * 0.5; float mist_moon_access = mist_sun_access; sun_access = mix(cloud_sun_access, mist_sun_access, clamp(mist * 20000, 0, 1)); moon_access = mix(cloud_moon_access, mist_moon_access, clamp(mist * 20000, 0, 1)); // Prevent mist (i.e: vapour beneath clouds) being accessible to the sun to avoid visual problems //float suppress_mist = clamp((pos.z - cloud_attr.x + cloud_attr.y) / 300, 0, 1); //sun_access *= suppress_mist; //moon_access *= suppress_mist; // Prevent clouds and mist appearing underground (but fade them out gently) float not_underground = clamp(1.0 - (alt_at(pos.xy - focus_off.xy) - (pos.z - focus_off.z)) / 80.0, 0, 1); air *= not_underground; float vapor_density = (mist + cloud) * not_underground; if (emission_strength <= 0.0) { emission = vec3(0); } else { float z = clamp(pos.z, 0, 10000); float emission_alt = 4000.0; #if (CLOUD_MODE >= CLOUD_MODE_LOW) emission_alt += (noise_3d(vec3(wind_pos.xy * 0.00003 + cloud_tendency * 0.2, time_of_day.x * 0.0001)) - 0.5) * 6000; #endif #if (CLOUD_MODE >= CLOUD_MODE_HIGH) emission_alt += (noise_3d(vec3(wind_pos.xy * 0.0005 + cloud_tendency * 0.2, emission_alt * 0.0001 + time_of_day.x * 0.0005)) - 0.5) * 1000; #endif float tail = (texture(t_noise, wind_pos.xy * 0.00005).x - 0.5) * 10 + (z - emission_alt) * 0.001; vec3 emission_col = vec3(0.6 + tail * 0.6, 1.0, 0.3 + tail * 0.2); float emission_nz = max(texture(t_noise, wind_pos.xy * 0.00003).x - 0.6, 0) / (10.0 + abs(z - emission_alt) / 40); #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) emission_nz *= (1.0 + (noise_3d(vec3(wind_pos.xy * 0.05, time_of_day.x * 0.15) * 0.004) - 0.5) * 4.0); #endif emission = emission_col * emission_nz * emission_strength * max(sun_dir.z, 0) * 20; } // We track vapor density and air density separately. Why? Because photons will ionize particles in air // leading to rayleigh scattering, but water vapor will not. Tracking these indepedently allows us to // get more correct colours. return vec4(sun_access, moon_access, vapor_density, air); } float atan2(in float y, in float x) { bool s = (abs(x) > abs(y)); return mix(PI/2.0 - atan(x,y), atan(y,x), s); } const float DIST_CAP = 50000; #if (CLOUD_MODE == CLOUD_MODE_ULTRA) const uint QUALITY = 200u; #elif (CLOUD_MODE == CLOUD_MODE_HIGH) const uint QUALITY = 50u; #elif (CLOUD_MODE == CLOUD_MODE_MEDIUM) const uint QUALITY = 30u; #elif (CLOUD_MODE == CLOUD_MODE_LOW) const uint QUALITY = 16u; #elif (CLOUD_MODE == CLOUD_MODE_MINIMAL) const uint QUALITY = 5u; #endif const float STEP_SCALE = DIST_CAP / (10.0 * float(QUALITY)); float step_to_dist(float step, float quality) { return pow(step, 2) * STEP_SCALE / quality; } float dist_to_step(float dist, float quality) { return pow(dist / STEP_SCALE * quality, 0.5); } vec3 get_cloud_color(vec3 surf_color, vec3 dir, vec3 origin, const float time_of_day, float max_dist, const float quality) { // Limit the marching distance to reduce maximum jumps max_dist = min(max_dist, DIST_CAP); origin.xyz += focus_off.xyz; // This hack adds a little direction-dependent noise to clouds. It's not correct, but it very cheaply // improves visual quality for low cloud settings float splay = 1.0; vec3 dir_diff = vec3(0); #if (CLOUD_MODE == CLOUD_MODE_MINIMAL) /* splay += (texture(t_noise, vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 1.5 - time_of_day * 0.000025).x - 0.5) * 0.4 / (1.0 + pow(dir.z, 2) * 10); */ /* dir_diff = vec3( */ /* (texture(t_noise, vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 1.0 - time_of_day * 0.00005).x - 0.5) * 0.2 / (1.0 + pow(dir.z, 2) * 10), */ /* (texture(t_noise, vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 1.0 - time_of_day * 0.00005).x - 0.5) * 0.2 / (1.0 + pow(dir.z, 2) * 10), */ /* (texture(t_noise, vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 1.0 - time_of_day * 0.00005).x - 0.5) * 0.2 / (1.0 + pow(dir.z, 2) * 10) */ /* ) * 1500; */ splay += (texture(t_noise, vec2(atan2(dir.x, dir.y) * 2 / PI, dir.z) * 5.0 - time_of_day * 0.00005).x - 0.5) * 0.075 / (1.0 + pow(dir.z, 2) * 10); #endif // Proportion of sunlight that get scattered back into the camera by clouds float sun_scatter = max(dot(-dir, sun_dir.xyz), 0.5); float moon_scatter = max(dot(-dir, moon_dir.xyz), 0.5); vec3 sky_color = get_sky_color(); float net_light = get_sun_brightness() + get_moon_brightness(); float cdist = max_dist; float ldist = cdist; // i is an emergency brake float min_dist = clamp(max_dist / 4, 0.25, 24); for (int i = 0; cdist > min_dist && i < 250; i ++) { ldist = cdist; cdist = step_to_dist(trunc(dist_to_step(cdist - 0.25, quality)), quality); vec3 emission; vec4 sample = cloud_at(origin + (dir + dir_diff / ldist) * ldist * splay, cdist, emission); vec2 density_integrals = max(sample.zw, vec2(0)) * (ldist - cdist); float sun_access = sample.x; float moon_access = sample.y; float scatter_factor = 1.0 - 1.0 / (1.0 + density_integrals.x); const float RAYLEIGH = 0.25; surf_color = // Attenuate light passing through the clouds surf_color * (1.0 - scatter_factor) + // This is not rayleigh scattering, but it's good enough for our purposes (only considers sun) (1.0 - surf_color) * net_light * sky_color * density_integrals.y * RAYLEIGH + // Add the directed light light scattered into the camera by the clouds get_sun_color() * sun_scatter * sun_access * scatter_factor * get_sun_brightness() + get_moon_color() * moon_scatter * moon_access * scatter_factor * get_moon_brightness() + emission * density_integrals.y + // Global illumination (uniform scatter from the sky) sky_color * sun_access * scatter_factor * get_sun_brightness() + sky_color * moon_access * scatter_factor * get_moon_brightness(); } return surf_color; }