use crate::{ all::ForestKind, block::block_from_structure, column::ColumnGen, util::{RandomPerm, Sampler, UnitChooser}, Canvas, CONFIG, }; use common::{ assets::AssetHandle, terrain::{Block, BlockKind, structure::{Structure, StructureBlock, StructuresGroup}}, vol::ReadVol, }; use hashbrown::HashMap; use lazy_static::lazy_static; use std::{f32, ops::Range}; use vek::*; use rand::prelude::*; lazy_static! { static ref OAKS: AssetHandle = Structure::load_group("oaks"); static ref OAK_STUMPS: AssetHandle = Structure::load_group("oak_stumps"); static ref PINES: AssetHandle = Structure::load_group("pines"); static ref PALMS: AssetHandle = Structure::load_group("palms"); static ref ACACIAS: AssetHandle = Structure::load_group("acacias"); static ref BAOBABS: AssetHandle = Structure::load_group("baobabs"); static ref FRUIT_TREES: AssetHandle = Structure::load_group("fruit_trees"); static ref BIRCHES: AssetHandle = Structure::load_group("birch"); static ref MANGROVE_TREES: AssetHandle = Structure::load_group("mangrove_trees"); static ref QUIRKY: AssetHandle = Structure::load_group("quirky"); static ref QUIRKY_DRY: AssetHandle = Structure::load_group("quirky_dry"); static ref SWAMP_TREES: AssetHandle = Structure::load_group("swamp_trees"); } static MODEL_RAND: RandomPerm = RandomPerm::new(0xDB21C052); static UNIT_CHOOSER: UnitChooser = UnitChooser::new(0x700F4EC7); static QUIRKY_RAND: RandomPerm = RandomPerm::new(0xA634460F); #[allow(clippy::if_same_then_else)] pub fn apply_trees_to(canvas: &mut Canvas) { // TODO: Get rid of this enum TreeModel { Structure(Structure), Procedural(ProceduralTree), } struct Tree { pos: Vec3, model: TreeModel, seed: u32, units: (Vec2, Vec2), } let mut tree_cache = HashMap::new(); let info = canvas.info(); canvas.foreach_col(|canvas, wpos2d, col| { let trees = info.land().get_near_trees(wpos2d); for (tree_wpos, seed) in trees { let tree = if let Some(tree) = tree_cache.entry(tree_wpos).or_insert_with(|| { let col = ColumnGen::new(info.land()).get((tree_wpos, info.index()))?; let is_quirky = QUIRKY_RAND.chance(seed, 1.0 / 500.0); // Ensure that it's valid to place a *thing* here if col.alt < col.water_level || col.spawn_rate < 0.9 || col.water_dist.map(|d| d < 8.0).unwrap_or(false) || col.path.map(|(d, _, _, _)| d < 12.0).unwrap_or(false) { return None; } // Ensure that it's valid to place a tree here if !is_quirky && ((seed.wrapping_mul(13)) & 0xFF) as f32 / 256.0 > col.tree_density { return None; } Some(Tree { pos: Vec3::new(tree_wpos.x, tree_wpos.y, col.alt as i32), model: 'model: { let models: AssetHandle<_> = if is_quirky { if col.temp > CONFIG.desert_temp { *QUIRKY_DRY } else { *QUIRKY } } else { match col.forest_kind { ForestKind::Oak if QUIRKY_RAND.chance(seed + 1, 1.0 / 16.0) => { *OAK_STUMPS }, ForestKind::Oak if QUIRKY_RAND.chance(seed + 2, 1.0 / 20.0) => { *FRUIT_TREES }, ForestKind::Palm => *PALMS, ForestKind::Acacia => *ACACIAS, ForestKind::Baobab => *BAOBABS, // ForestKind::Oak => *OAKS, ForestKind::Oak => { break 'model TreeModel::Procedural(ProceduralTree::generate(TreeConfig::OAK, seed)); }, ForestKind::Pine => *PINES, ForestKind::Birch => *BIRCHES, ForestKind::Mangrove => *MANGROVE_TREES, ForestKind::Swamp => *SWAMP_TREES, } }; let models = models.read(); TreeModel::Structure(models[(MODEL_RAND.get(seed.wrapping_mul(17)) / 13) as usize % models.len()] .clone()) }, seed, units: UNIT_CHOOSER.get(seed), }) }) { tree } else { continue; }; let bounds = match &tree.model { TreeModel::Structure(s) => s.get_bounds(), TreeModel::Procedural(t) => t.get_bounds().map(|e| e as i32), }; let rpos2d = (wpos2d - tree.pos.xy()) .map2(Vec2::new(tree.units.0, tree.units.1), |p, unit| { unit * p }) .sum(); if !Aabr::from(bounds).contains_point(rpos2d) { // Skip this column continue; } let mut is_top = true; let mut is_leaf_top = true; for z in (bounds.min.z..bounds.max.z).rev() { let wpos = Vec3::new(wpos2d.x, wpos2d.y, tree.pos.z + z); let model_pos = Vec3::from( (wpos - tree.pos) .xy() .map2(Vec2::new(tree.units.0, tree.units.1), |rpos, unit| { unit * rpos }) .sum(), ) + Vec3::unit_z() * (wpos.z - tree.pos.z); block_from_structure( info.index(), if let Some(block) = match &tree.model { TreeModel::Structure(s) => s.get(model_pos).ok().copied(), TreeModel::Procedural(t) => Some(match t.is_branch_or_leaves_at(model_pos.map(|e| e as f32 + 0.5)) { (true, _) => StructureBlock::Normal(Rgb::new(60, 30, 0)), (_, true) => StructureBlock::TemperateLeaves, (_, _) => StructureBlock::None, }), } { block } else { break }, wpos, tree.pos.xy(), tree.seed, col, Block::air, ) .map(|block| { // Add a snow covering to the block above under certain circumstances if col.snow_cover && ((block.kind() == BlockKind::Leaves && is_leaf_top) || (is_top && block.is_filled())) { canvas.set( wpos + Vec3::unit_z(), Block::new(BlockKind::Snow, Rgb::new(210, 210, 255)), ); } canvas.set(wpos, block); is_leaf_top = false; is_top = false; }) .unwrap_or_else(|| { is_leaf_top = true; }); } } }); } /// A type that specifies the generation properties of a tree. pub struct TreeConfig { /// Length of trunk, also scales other branches. pub trunk_len: f32, /// Radius of trunk, also scales other branches. pub trunk_radius: f32, // The scale that child branch lengths should be compared to their parents pub branch_child_len: f32, // The scale that child branch radii should be compared to their parents pub branch_child_radius: f32, /// 0 - 1 (0 = chaotic, 1 = straight). pub straightness: f32, /// Maximum number of branch layers (not including trunk). pub max_depth: usize, /// The number of branches that form from each branch. pub splits: usize, /// The range of proportions along a branch at which a split into another branch might occur. /// This value is clamped between 0 and 1, but a wider range may bias the results towards branch ends. pub split_range: Range, } impl TreeConfig { pub const OAK: Self = Self { trunk_len: 12.0, trunk_radius: 3.0, branch_child_len: 0.8, branch_child_radius: 0.6, straightness: 0.5, max_depth: 4, splits: 3, split_range: 0.5..1.5, }; } // TODO: Rename this to `Tree` when the name conflict is gone pub struct ProceduralTree { branches: Vec, trunk_idx: usize, } impl ProceduralTree { /// Generate a new tree using the given configuration and seed. pub fn generate(config: TreeConfig, seed: u32) -> Self { let mut rng = RandomPerm::new(seed); let mut this = Self { branches: Vec::new(), trunk_idx: 0, // Gets replaced later }; // Add the tree trunk (and sub-branches) recursively let (trunk_idx, _) = this.add_branch( &config, // Our trunk starts at the origin... Vec3::zero(), // ...and has a roughly upward direction Vec3::new(rng.gen_range(-1.0, 1.0), rng.gen_range(-1.0, 1.0), 5.0).normalized(), config.trunk_len, config.trunk_radius, 0, None, &mut rng, ); this.trunk_idx = trunk_idx; this } // Recursively add a branch (with sub-branches) to the tree's branch graph, returning the index and AABB of the // branch. This AABB gets propagated down to the parent and is used later during sampling to cull the branches to // be sampled. fn add_branch( &mut self, config: &TreeConfig, start: Vec3, dir: Vec3, branch_len: f32, branch_radius: f32, depth: usize, sibling_idx: Option, rng: &mut impl Rng, ) -> (usize, Aabb) { let end = start + dir * branch_len; let line = LineSegment3 { start, end }; let wood_radius = branch_radius; let leaf_radius = if depth == config.max_depth { rng.gen_range(3.0, 5.0) } else { 0.0 }; // The AABB that covers this branch, along with wood and leaves that eminate from it let mut aabb = Aabb { min: Vec3::partial_min(start, end) - wood_radius.max(leaf_radius), max: Vec3::partial_max(start, end) + wood_radius.max(leaf_radius), }; let mut child_idx = None; // Don't add child branches if we're already enough layers into the tree if depth < config.max_depth { for _ in 0..config.splits { // Choose a point close to the branch to act as the target direction for the branch to grow in let tgt = Lerp::lerp( start, end, rng.gen_range(config.split_range.start, config.split_range.end).clamped(0.0, 1.0), ) + Vec3::::zero().map(|_| rng.gen_range(-1.0, 1.0)); // Start the branch at the closest point to the target let branch_start = line.projected_point(tgt); // Now, interpolate between the target direction and the parent branch's direction to find a direction let branch_dir = Lerp::lerp(tgt - branch_start, dir, config.straightness).normalized(); let (branch_idx, branch_aabb) = self.add_branch( config, branch_start, branch_dir, branch_len * config.branch_child_len, branch_radius * config.branch_child_radius, depth + 1, child_idx, rng, ); child_idx = Some(branch_idx); // Parent branches AABBs include the AABBs of child branches to allow for culling during sampling aabb.expand_to_contain(branch_aabb); } } let idx = self.branches.len(); // Compute the index that this branch is going to have self.branches.push(Branch { line, wood_radius, leaf_radius, aabb, sibling_idx, child_idx, }); (idx, aabb) } /// Get the bounding box that covers the tree (all branches and leaves) pub fn get_bounds(&self) -> Aabb { self.branches[self.trunk_idx].aabb } // Recursively search for branches or leaves by walking the tree's branch graph. fn is_branch_or_leaves_at_inner(&self, pos: Vec3, branch_idx: usize) -> (bool, bool) { let branch = &self.branches[branch_idx]; // Always probe the sibling branch, since our AABB doesn't include its bounds (it's not one of our children) let branch_or_leaves = branch.sibling_idx .map(|idx| Vec2::from(self.is_branch_or_leaves_at_inner(pos, idx))) .unwrap_or_default(); // Only continue probing this sub-graph of the tree if the sample position falls within its AABB if branch.aabb.contains_point(pos) { (branch_or_leaves // Probe this branch | Vec2::from(branch.is_branch_or_leaves_at(pos)) // Probe the children of this branch | branch.child_idx .map(|idx| Vec2::from(self.is_branch_or_leaves_at_inner(pos, idx))) .unwrap_or_default()) .into_tuple() } else { branch_or_leaves.into_tuple() } } /// Determine whether there are either branches or leaves at the given position in the tree. #[inline(always)] pub fn is_branch_or_leaves_at(&self, pos: Vec3) -> (bool, bool) { self.is_branch_or_leaves_at_inner(pos, self.trunk_idx) } } // Branches are arranged in a graph shape. Each branch points to both its first child (if any) and also to the next // branch in the list of child branches associated with the parent. This means that the entire tree is laid out in a // walkable graph where each branch refers only to two other branches. As a result, walking the tree is simply a case // of performing double recursion. struct Branch { line: LineSegment3, wood_radius: f32, leaf_radius: f32, aabb: Aabb, sibling_idx: Option, child_idx: Option, } impl Branch { /// Determine whether there are either branches or leaves at the given position in the branch. pub fn is_branch_or_leaves_at(&self, pos: Vec3) -> (bool, bool) { // fn finvsqrt(x: f32) -> f32 { // let y = f32::from_bits(0x5f375a86 - (x.to_bits() >> 1)); // y * (1.5 - ( x * 0.5 * y * y )) // } let p_d2 = self.line.projected_point(pos).distance_squared(pos); if p_d2 < self.wood_radius.powi(2) { (true, false) } else { (false, p_d2 < self.leaf_radius.powi(2)) } } }