#include uniform sampler2D t_noise; const float PI = 3.141592; const vec3 SKY_DAY_TOP = vec3(0.1, 0.2, 0.9); const vec3 SKY_DAY_MID = vec3(0.02, 0.08, 0.8); const vec3 SKY_DAY_BOT = vec3(0.1, 0.2, 0.3); const vec3 DAY_LIGHT = vec3(1.2, 1.0, 1.0); const vec3 SUN_HALO_DAY = vec3(0.35, 0.35, 0.0); const vec3 SKY_DUSK_TOP = vec3(0.06, 0.1, 0.20); const vec3 SKY_DUSK_MID = vec3(0.35, 0.1, 0.15); const vec3 SKY_DUSK_BOT = vec3(0.0, 0.1, 0.23); const vec3 DUSK_LIGHT = vec3(3.0, 1.5, 0.3); const vec3 SUN_HALO_DUSK = vec3(1.2, 0.15, 0.0); const vec3 SKY_NIGHT_TOP = vec3(0.001, 0.001, 0.0025); const vec3 SKY_NIGHT_MID = vec3(0.001, 0.005, 0.02); const vec3 SKY_NIGHT_BOT = vec3(0.002, 0.004, 0.004); const vec3 NIGHT_LIGHT = vec3(0.002, 0.01, 0.03); vec3 get_sun_dir(float time_of_day) { const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); float sun_angle_rad = time_of_day * TIME_FACTOR; return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); } vec3 get_moon_dir(float time_of_day) { const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); float moon_angle_rad = time_of_day * TIME_FACTOR; return normalize(-vec3(sin(moon_angle_rad), 0.0, cos(moon_angle_rad) - 0.5)); } const float PERSISTENT_AMBIANCE = 0.1; float get_sun_brightness(vec3 sun_dir) { return max(-sun_dir.z + 0.6, 0.0) * 0.9; } float get_moon_brightness(vec3 moon_dir) { return max(-moon_dir.z + 0.6, 0.0) * 0.07; } vec3 get_sun_color(vec3 sun_dir) { return mix( mix( DUSK_LIGHT, NIGHT_LIGHT, max(sun_dir.z, 0) ), DAY_LIGHT, max(-sun_dir.z, 0) ); } vec3 get_moon_color(vec3 moon_dir) { return vec3(0.05, 0.05, 0.6); } void get_sun_diffuse(vec3 norm, float time_of_day, out vec3 light, out vec3 diffuse_light, out vec3 ambient_light, float diffusion) { const float SUN_AMBIANCE = 0.1; vec3 sun_dir = get_sun_dir(time_of_day); vec3 moon_dir = get_moon_dir(time_of_day); float sun_light = get_sun_brightness(sun_dir); float moon_light = get_moon_brightness(moon_dir); // clamp() changed to max() as sun_dir.z is produced from a cos() function and therefore never greater than 1 vec3 sun_color = get_sun_color(sun_dir); vec3 moon_color = get_moon_color(moon_dir); vec3 sun_chroma = sun_color * sun_light; vec3 moon_chroma = moon_color * moon_light; light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE; diffuse_light = sun_chroma * mix(1.0, max(dot(-norm, sun_dir) * 0.6 + 0.4, 0.0), diffusion) + moon_chroma * mix(1.0, pow(max(dot(-norm, moon_dir), 0.0), 2.0), diffusion) + PERSISTENT_AMBIANCE; ambient_light = vec3(SUN_AMBIANCE * sun_light + moon_light); } // This has been extracted into a function to allow quick exit when detecting a star. float is_star_at(vec3 dir) { float star_scale = 30.0; for (int i = 0; i < 2; i ++) { for (int j = 0; j < 2; j ++) { for (int k = 0; k < 2; k ++) { // Star positions vec3 pos = (floor(dir * star_scale) + vec3(i, j, k) - vec3(0.5)) / star_scale; // Noisy offsets pos += (3.0 / star_scale) * rand_perm_3(pos); // Find distance to fragment float dist = length(normalize(pos) - dir); // Star threshold if (dist < 0.0015) { return 1.0; } } } } return 0.0; } const float CLOUD_AVG_HEIGHT = 1025.0; const float CLOUD_HEIGHT_MIN = CLOUD_AVG_HEIGHT - 30.0; const float CLOUD_HEIGHT_MAX = CLOUD_AVG_HEIGHT + 30.0; const float CLOUD_THRESHOLD = 0.3; const float CLOUD_SCALE = 1.0; const float CLOUD_DENSITY = 100.0; float vsum(vec3 v) { return v.x + v.y + v.z; } vec2 cloud_at(vec3 pos) { float tick_offs = 0.0 + texture(t_noise, pos.xy * 0.0001 + tick.x * 0.001).x * 1.0 + texture(t_noise, pos.xy * 0.000003).x * 5.0; float value = ( 0.0 + texture(t_noise, pos.xy / CLOUD_SCALE * 0.0003 + tick_offs).x + texture(t_noise, pos.xy / CLOUD_SCALE * 0.0009 - tick_offs).x * 0.5 + texture(t_noise, pos.xy / CLOUD_SCALE * 0.0025 - tick.x * 0.01).x * 0.25 + texture(t_noise, pos.xy / CLOUD_SCALE * 0.008 + tick.x * 0.02).x * 0.1 ) / 3.0; float density = max((value - CLOUD_THRESHOLD) - abs(pos.z - CLOUD_AVG_HEIGHT) / 500.0, 0.0) * CLOUD_DENSITY; float shade = 1.0 - min(pow(max(CLOUD_AVG_HEIGHT - pos.z, 0.0), 0.15) * 0.5, 1.0) / 0.5; return vec2(shade, density / (1.0 + vsum(abs(pos - cam_pos.xyz)) / 5000)); } vec4 get_cloud_color(vec3 dir, vec3 origin, float time_of_day, float max_dist, float quality) { const float INCR = 0.06; float mind = (CLOUD_HEIGHT_MIN - origin.z) / dir.z; float maxd = (CLOUD_HEIGHT_MAX - origin.z) / dir.z; float start = max(min(mind, maxd), 0.0); float delta = min(abs(mind - maxd), 5000.0); delta = min(delta, max_dist); bool do_cast = true; if (mind < 0.0 && maxd < 0.0) { do_cast = false; } float incr = clamp(INCR / (0.01 * delta * quality), INCR, INCR * 3.0); float fuzz = sin(texture(t_noise, dir.xz * 100000.0).x * 100.0) * 1.0 * incr * delta; float cloud_shade = 1.0; float passthrough = 1.0; if (do_cast) { for (float d = 0.0; d < 1.0; d += incr) { float dist = start + d * delta; dist += fuzz * min(pow(dist * 0.005, 2.0), 1.0); vec3 pos = origin + dir * min(dist, max_dist); vec2 sample = cloud_at(pos); float integral = sample.y * incr; passthrough *= 1.0 - integral; cloud_shade = mix(cloud_shade, sample.x, passthrough * integral); } } float total_density = 1.0 - passthrough / (1.0 + min(delta, max_dist) * 0.0003); total_density = max(total_density - 1.0 / pow(max_dist, 0.25), 0.0); // Hack return vec4(vec3(cloud_shade), total_density); } vec3 get_sky_color(vec3 dir, float time_of_day, vec3 origin, vec3 f_pos, float quality, bool with_stars, out vec4 clouds) { // Sky color vec3 sun_dir = get_sun_dir(time_of_day); vec3 moon_dir = get_moon_dir(time_of_day); // Add white dots for stars. Note these flicker and jump due to FXAA float star = 0.0; if (with_stars) { star = is_star_at(dir); } // Sun const vec3 SUN_SURF_COLOR = vec3(1.5, 0.9, 0.35) * 200.0; vec3 sun_halo_color = mix( SUN_HALO_DUSK, SUN_HALO_DAY, max(-sun_dir.z, 0) ); vec3 sun_halo = pow(max(dot(dir, -sun_dir) + 0.1, 0.0), 8.0) * sun_halo_color; vec3 sun_surf = pow(max(dot(dir, -sun_dir) - 0.001, 0.0), 3000.0) * SUN_SURF_COLOR; vec3 sun_light = (sun_halo + sun_surf) * clamp(dir.z * 10.0, 0, 1); // Moon const vec3 MOON_SURF_COLOR = vec3(0.7, 1.0, 1.5) * 500.0; const vec3 MOON_HALO_COLOR = vec3(0.015, 0.015, 0.05); vec3 moon_halo = pow(max(dot(dir, -moon_dir) + 0.1, 0.0), 8.0) * MOON_HALO_COLOR; vec3 moon_surf = pow(max(dot(dir, -moon_dir) - 0.001, 0.0), 3000.0) * MOON_SURF_COLOR; vec3 moon_light = clamp(moon_halo + moon_surf, vec3(0), vec3(clamp(dir.z * 3.0, 0, 1))); // Replaced all clamp(sun_dir, 0, 1) with max(sun_dir, 0) because sun_dir is calculated from sin and cos, which are never > 1 vec3 sky_top = mix( mix( SKY_DUSK_TOP + star / (1.0 + moon_surf * 100.0), SKY_NIGHT_TOP + star / (1.0 + moon_surf * 100.0), max(pow(sun_dir.z, 0.2), 0) ), SKY_DAY_TOP, max(-sun_dir.z, 0) ); vec3 sky_mid = mix( mix( SKY_DUSK_MID, SKY_NIGHT_MID, max(pow(sun_dir.z, 0.2), 0) ), SKY_DAY_MID, max(-sun_dir.z, 0) ); vec3 sky_bot = mix( mix( SKY_DUSK_BOT, SKY_NIGHT_BOT, max(pow(sun_dir.z, 0.2), 0) ), SKY_DAY_BOT, max(-sun_dir.z, 0) ); vec3 sky_color = mix( mix( sky_mid, sky_bot, pow(max(-dir.z, 0), 0.4) ), sky_top, max(dir.z, 0) ); // Approximate distance to fragment float f_dist = distance(origin, f_pos); // Clouds clouds = get_cloud_color(dir, origin, time_of_day, f_dist, quality); clouds.rgb *= get_sun_brightness(sun_dir) * (sun_halo * 2.5 + get_sun_color(sun_dir)) + get_moon_brightness(moon_dir) * (moon_halo * 80.0 + get_moon_color(moon_dir)); if (f_dist > 5000.0) { sky_color += sun_light + moon_light; } return mix(sky_color, clouds.rgb, clouds.a); } float fog(vec3 f_pos, vec3 focus_pos, uint medium) { float fog_radius = view_distance.x; float mist_radius = 10000000.0; float min_fog = 0.5; float max_fog = 1.0; if (medium == 1u) { mist_radius = 96.0; min_fog = 0.0; } float fog = distance(f_pos.xy, focus_pos.xy) / fog_radius; float mist = distance(f_pos, focus_pos) / mist_radius; return pow(clamp((max(fog, mist) - min_fog) / (max_fog - min_fog), 0.0, 1.0), 1.7); }