#version 330 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_SHADOW_MAPS #include layout(location = 0) in vec3 f_pos; layout(location = 1) flat in vec3 f_norm; layout(location = 2) flat in float f_select; // flat in vec3 f_pos_norm; layout(location = 3) in vec2 f_uv_pos; layout(location = 4) in vec2 f_inst_light; // flat in uint f_atlas_pos; // in vec3 f_col; // in float f_ao; // in float f_light; // in vec4 light_pos[2]; layout(set = 4, binding = 0) uniform texture2D t_col_light; layout(set = 4, binding = 1) uniform sampler s_col_light; //struct ShadowLocals { // mat4 shadowMatrices; // mat4 texture_mat; //}; // //layout (std140) //uniform u_light_shadows { // ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192]; //}; layout(location = 0) out vec4 tgt_color; #include #include #include const float FADE_DIST = 32.0; void main() { /* if (f_uv_pos.x < 757) { discard; } */ // vec2 f_uv_pos = vec2(768,1) + 0.5; // vec2 f_uv_pos = vec2(760, 380);// + 0.5; // vec2 f_uv_pos = vec2((uvec2(f_atlas_pos) >> uvec2(0, 16)) & uvec2(0xFFFFu, 0xFFFFu)) + 0.5; /* if (f_uv_pos.x < 757) { discard; } */ // vec3 du = dFdx(f_pos); // vec3 dv = dFdy(f_pos); // vec3 f_norm = normalize(cross(du, dv)); float f_ao, f_glow; vec3 f_col = greedy_extract_col_light_glow(t_col_light, s_col_light, f_uv_pos, f_ao, f_glow); // vec3 my_chunk_pos = f_pos_norm; // tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0); // tgt_color = vec4(f_uv_pos / texSize, 0.0, 1.0); // tgt_color = vec4(f_col.rgb, 1.0); // return; // vec4 light_pos[2]; //#if (SHADOW_MODE == SHADOW_MODE_MAP) // // for (uint i = 0u; i < light_shadow_count.z; ++i) { // // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/; // // } // vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/; //#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // vec4 sun_pos = vec4(0.0); //#endif vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY) float f_alt = alt_at(f_pos.xy); // float f_alt = f_pos.z; #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP) float f_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); // float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // float sun_shade_frac = horizon_at(f_pos, sun_dir); // float moon_shade_frac = horizon_at(f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). // float shade_frac = sun_shade_frac + moon_shade_frac; // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); float point_shadow = shadow_at(f_pos, f_norm); DirectionalLight sun_info = get_sun_info(sun_dir, point_shadow * sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, point_shadow * moon_shade_frac/*, light_pos*/); vec3 surf_color = /*srgb_to_linear*//*linear_to_srgb*/(f_col); float alpha = 1.0; const float n2 = 1.5; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 emitted_light, reflected_light; // Make voxel shadows block the sun and moon sun_info.block = f_inst_light.x; moon_info.block = f_inst_light.x; // To account for prior saturation. // float vert_light = pow(f_light, 1.5); // vec3 light_frac = light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha); /* light_frac += light_reflection_factor(f_norm, view_dir, vec3(1.0, 0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(-1.0, 0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(0.0, -1.0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(0.0, 1.0, 0.0), vec3(1.0), vec3(1.0), 2.0); */ // vec3 light, diffuse_light, ambient_light; // vec3 emitted_light, reflected_light; // float point_shadow = shadow_at(f_pos,f_norm); // vec3 point_light = light_at(f_pos, f_norm); // vec3 surf_color = srgb_to_linear(vec3(0.2, 0.5, 1.0)); // vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); float max_light = 0.0; max_light += get_sun_diffuse2(sun_info, moon_info, f_norm, /*time_of_day.x, *//*cam_to_frag*/view_dir, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, emitted_light, reflected_light); // reflected_light *= /*vert_light * */point_shadow * shade_frac; // emitted_light *= /*vert_light * */point_shadow * max(shade_frac, MIN_SHADOW); // max_light *= /*vert_light * */point_shadow * shade_frac; // emitted_light *= point_shadow; // reflected_light *= point_shadow; // max_light *= point_shadow; // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // float point_shadow = shadow_at(f_pos, f_norm); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light * point_shadow; // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; max_light += lights_at(f_pos, f_norm, view_dir, k_a, k_d, k_s, alpha, emitted_light, reflected_light); /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ // float ao = /*pow(f_ao, 0.5)*/f_ao * 0.85 + 0.15; vec3 glow = pow(f_inst_light.y, 3) * 4 * glow_light(f_pos); emitted_light += glow; float ao = f_ao; emitted_light *= ao; reflected_light *= ao; surf_color = illuminate(max_light, view_dir, surf_color * emitted_light, surf_color * reflected_light); // vec3 surf_color = illuminate(f_col, light, diffuse_light, ambient_light); surf_color += f_select * (surf_color + 0.1) * vec3(0.15, 0.15, 0.15); // tgt_color = vec4(color, 1.0); tgt_color = vec4(surf_color, 1.0 - clamp((distance(focus_pos.xy, f_pos.xy) - (sprite_render_distance - FADE_DIST)) / FADE_DIST, 0, 1)); }