//https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl vec3 srgb_to_linear(vec3 srgb) { bvec3 cutoff = lessThan(srgb, vec3(0.04045)); vec3 higher = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4)); vec3 lower = srgb/vec3(12.92); return mix(higher, lower, cutoff); } vec3 linear_to_srgb(vec3 col) { // bvec3 cutoff = lessThan(col, vec3(0.0060)); // return mix(11.500726 * col, , cutoff); vec3 s1 = vec3(sqrt(col.r), sqrt(col.g), sqrt(col.b)); vec3 s2 = vec3(sqrt(s1.r), sqrt(s1.g), sqrt(s1.b)); vec3 s3 = vec3(sqrt(s2.r), sqrt(s2.g), sqrt(s2.b)); return vec3( mix(11.500726 * col.r, (0.585122381 * s1.r + 0.783140355 * s2.r - 0.368262736 * s3.r), clamp((col.r - 0.0060) * 10000.0, 0.0, 1.0)), mix(11.500726 * col.g, (0.585122381 * s1.g + 0.783140355 * s2.g - 0.368262736 * s3.g), clamp((col.g - 0.0060) * 10000.0, 0.0, 1.0)), mix(11.500726 * col.b, (0.585122381 * s1.b + 0.783140355 * s2.b - 0.368262736 * s3.b), clamp((col.b - 0.0060) * 10000.0, 0.0, 1.0)) ); } float pow5(float x) { float x2 = x * x; return x2 * x2 * x; } // Fresnel angle for perfectly specular dialectric materials. // Schlick approximation vec3 schlick_fresnel(vec3 Rs, float cosTheta) { // auto pow5 = [](Float v) { return (v * v) * (v * v) * v; }; // return Rs + pow5(1 - cosTheta) * (Spectrum(1.) - Rs); return Rs + pow5(1.0 - cosTheta) * (1.0 - Rs); } // Beckmann Distribution float BeckmannDistribution_D(float NdotH, float alpha) { const float PI = 3.1415926535897932384626433832795; float NdotH2 = NdotH * NdotH; float NdotH2m2 = NdotH2 * alpha * alpha; float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); return mix(k_spec, 0.0, NdotH == 0.0); } float BeckmannDistribution_Lambda(vec3 norm, vec3 dir, float alpha) { float CosTheta = /*max(dot(norm, dir), 0.0);*/dot(norm, dir); /* if (CosTheta == 0.0) { return 0.0; } float SinTheta = sqrt(1.0 - CosTheta * CosTheta); float TanTheta = SinTheta / CosTheta; float absTanTheta = abs(TanTheta); */ // vec3 w = normalize(dir - dot(dir, norm) * (norm)); // float CosTheta = w.z; float SinTheta = sqrt(1.0 - CosTheta * CosTheta); float TanTheta = SinTheta / CosTheta; float absTanTheta = abs(TanTheta); /* if (isinf(absTanTheta)) { return 0.0; } */ /* float CosPhi = mix(clamp(projDirNorm.x / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0); float SinPhi = mix(clamp(projDirNorm.y / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0); float alpha = sqrt(CosPhi * CosPhi * alphax * alphax + SinPhi * SinPhi * alphay * alphay); */ // Float absTanTheta = std::abs(TanTheta(w)); // if (std::isinf(absTanTheta)) return 0.; // <> // Float alpha = std::sqrt(Cos2Phi(w) * alphax * alphax + // Sin2Phi(w) * alphay * alphay); float a = 1.0 / (alpha * absTanTheta); /* if (a >= 1.6) { return 0.0; } return (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a); */ return mix(max(0.0, (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a)), 0.0, isinf(absTanTheta) || a >= 1.6); // Float a = 1 / (alpha * absTanTheta); // if (a >= 1.6f) // return 0; // return (1 - 1.259f * a + 0.396f * a * a) / // (3.535f * a + 2.181f * a * a); // return 1 / (1 + Lambda(wo) + Lambda(wi)); } float BeckmannDistribution_G(vec3 norm, vec3 dir, vec3 light_dir, float alpha) { // return 1 / (1 + Lambda(wo) + Lambda(wi)); return 1.0 / (1.0 + BeckmannDistribution_Lambda(norm, dir, alpha) + BeckmannDistribution_Lambda(norm, -light_dir, alpha)); } // Fresnel blending // // http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fragment-MicrofacetDistributionPublicMethods-2 // and // http://www.pbr-book.org/3ed-2018/Reflection_Models/Fresnel_Incidence_Effects.html vec3 FresnelBlend_f(vec3 norm, vec3 dir, vec3 light_dir, vec3 R_d, vec3 R_s, float alpha) { const float PI = 3.1415926535897932384626433832795; alpha = alpha * sqrt(2.0); float cos_wi = /*max(*/dot(-light_dir, norm)/*, 0.0)*/; float cos_wo = /*max(*/dot(dir, norm)/*, 0.0)*/; vec3 diffuse = (28.0 / (23.0 * PI)) * R_d * (1.0 - R_s) * (1.0 - pow5(1.0 - 0.5 * abs(cos_wi))) * (1.0 - pow5(1.0 - 0.5 * abs(cos_wo))); /* Spectrum diffuse = (28.f/(23.f*Pi)) * Rd * (Spectrum(1.f) - Rs) * (1 - pow5(1 - .5f * AbsCosTheta(wi))) * (1 - pow5(1 - .5f * AbsCosTheta(wo))); */ // Vector3f wh = wi + wo; vec3 wh = -light_dir + dir; if (cos_wi <= 0.0 || cos_wo <= 0.0) { return vec3(/*diffuse*/0.0); } // if (cos_wo < 0.0) { // return /*vec3(0.0)*/diffuse; // } /* if (cos_wi == 0.0 || cos_wo == 0.0) { return vec3(0.0); } */ /* if (wh.x == 0 && wh.y == 0 && wh.z == 0) { return vec3(0.0); // return Spectrum(0); } */ wh = normalize(wh);//mix(normalize(wh), vec3(0.0), equal(light_dir, dir)); float dot_wi_wh = dot(-light_dir, wh); vec3 specular = BeckmannDistribution_D(dot(wh, norm), alpha) / (4 * abs(dot_wi_wh)) * max(abs(cos_wi), abs(cos_wo)) * schlick_fresnel(R_s, dot_wi_wh); // Spectrum specular = distribution->D(wh) / // (4 * AbsDot(wi, wh) * // std::max(AbsCosTheta(wi), AbsCosTheta(wo))) * // SchlickFresnel(Dot(wi, wh)); return mix(/*diffuse*//* + specular*/diffuse + specular, vec3(0.0), bvec3(all(equal(light_dir, dir)))); } // Phong reflection. // // Note: norm, dir, light_dir must all be normalizd. vec3 light_reflection_factor(vec3 norm, vec3 dir, vec3 light_dir, vec3 k_d, vec3 k_s, float alpha) { // TODO: These are supposed to be the differential changes in the point location p, in tangent space. // That is, assuming we can parameterize a 2D surface by some function p : R² → R³, mapping from // points in a plane to 3D points on the surface, we can define // ∂p(u,v)/∂u and ∂p(u,v)/∂v representing the changes in the pont location as we move along these // coordinates. // // Then we can define the normal at a point, n(u,v) = ∂p(u,v)/∂u × ∂p(u,v)/∂v. // // Additionally, we can define the change in *normals* at each point using the // Weingarten equations (see http://www.pbr-book.org/3ed-2018/Shapes/Spheres.html): // // ∂n/∂u = (fF - eG) / (EG - F²) ∂p/∂u + (eF - fE) / (EG - F²) ∂p/∂v // ∂n/∂v = (gF - fG) / (EG - F²) ∂p/∂u + (fF - gE) / (EG - F²) ∂p/∂v // // where // // E = |∂p/∂u ⋅ ∂p/∂u| // F = ∂p/∂u ⋅ ∂p/∂u // G = |∂p/∂v ⋅ ∂p/∂v| // // and // // e = n ⋅ ∂²p/∂u² // f = n ⋅ ∂²p/(∂u∂v) // g = n ⋅ ∂²p/∂v² // // For planes (see http://www.pbr-book.org/3ed-2018/Shapes/Triangle_Meshes.html) we have // e = f = g = 0 (since the plane has no curvature of any sort) so we get: // // ∂n/∂u = (0, 0, 0) // ∂n/∂v = (0, 0, 0) // // To find ∂p/∂u and ∂p/∂v, we first write p and u parametrically: // p(u, v) = p0 + u ∂p/∂u + v ∂p/∂v // // ( u₀ - u₂ v₀ - v₂ // u₁ - u₂ v₁ - v₂ ) // // Basis: plane norm = norm = (0, 0, 1), x vector = any orthgonal vector on the plane. // vec3 w_i = // vec3 w_i = vec3(view_mat * vec4(-light_dir, 1.0)); // vec3 w_o = vec3(view_mat * vec4(light_dir, 1.0)); float g = 1.0;// BeckmannDistribution_G(norm, dir, light_dir, alpha); return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s * g, alpha); // const float PI = 3.141592; // alpha = alpha * sqrt(2.0); // float ndotL = /*max*/(dot(norm, -light_dir)/*, 0.0*/); // //if (ndotL > 0.0/* && dot(s_norm, -light_dir) > 0.0*/) { // vec3 H = normalize(-light_dir + dir); // float NdotH = dot(norm, H); // float NdotH2 = NdotH * NdotH; // float NdotH2m2 = NdotH2 * alpha * alpha; // float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); // return mix(k_s * k_spec, vec3(0.0), bvec3(ndotL <= 0.0 || NdotH == 0.0)); // // // // (k_d * (L ⋅ N) + k_s * (R ⋅ V)^α) // // return k_d * ndotL + mix(k_s * pow(max(dot(norm, H), 0.0), alpha * 4.0), vec3(0.0), bvec3(ndotL == 0.0)); // // } // // return vec3(0.0); } float rel_luminance(vec3 rgb) { // https://en.wikipedia.org/wiki/Relative_luminance const vec3 W = vec3(0.2126, 0.7152, 0.0722); return dot(rgb, W); }