const float PI = 3.141592; const vec3 SKY_DAY_TOP = vec3(0.35, 0.45, 0.9); const vec3 SKY_DAY_MID = vec3(0.25, 0.35, 0.8); const vec3 SKY_DAY_BOT = vec3(0.02, 0.1, 0.3); const vec3 DAY_LIGHT = vec3(0.5, 0.5, 1.0); const vec3 SKY_DUSK_TOP = vec3(0.1, 0.15, 0.3); const vec3 SKY_DUSK_MID = vec3(0.8, 0.25, 0.2); const vec3 SKY_DUSK_BOT = vec3(0.01, 0.05, 0.15); const vec3 DUSK_LIGHT = vec3(0.9, 0.4, 0.3); const vec3 SKY_NIGHT_TOP = vec3(0.001, 0.001, 0.0025); const vec3 SKY_NIGHT_MID = vec3(0.001, 0.005, 0.02); const vec3 SKY_NIGHT_BOT = vec3(0.002, 0.002, 0.005); const vec3 NIGHT_LIGHT = vec3(0.002, 0.01, 0.03); vec3 get_sun_dir(float time_of_day) { const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); float sun_angle_rad = time_of_day * TIME_FACTOR; vec3 sun_dir = vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); return sun_dir; } float get_sun_brightness(vec3 sun_dir) { return max(-sun_dir.z + 0.6, 0.0); } const float PERSISTENT_AMBIANCE = 0.008; vec3 get_sun_diffuse(vec3 norm, float time_of_day) { const float SUN_AMBIANCE = 0.075; vec3 sun_dir = get_sun_dir(time_of_day); float sun_light = get_sun_brightness(sun_dir); // clamp() changed to max() as sun_dir.z is produced from a cos() function and therefore never greater than 1 vec3 sun_color = normalize(mix( mix( DUSK_LIGHT, NIGHT_LIGHT, max(sun_dir.z, 0) ), DAY_LIGHT, max(-sun_dir.z, 0) )); vec3 diffuse_light = (SUN_AMBIANCE + max(dot(-norm, sun_dir), 0.0) * sun_color) * sun_light + PERSISTENT_AMBIANCE; return diffuse_light; } vec3 rand_offs(vec3 pos) { return sin(pos * vec3(1473.7 * pos.z + 472.3, 8891.1 * pos.x + 723.1, 3813.3 * pos.y + 982.5)); } // This has been extracted into a function to allow quick exit when detecting a star. float is_star_at(vec3 dir) { float star_scale = 30.0; for (int i = 0; i < 2; i ++) { for (int j = 0; j < 2; j ++) { for (int k = 0; k < 2; k ++) { // Star positions vec3 pos = (floor(dir * star_scale) + vec3(i, j, k) - vec3(0.5)) / star_scale; // Noisy offsets pos += (3.0 / star_scale) * rand_offs(pos); // Find distance to fragment float dist = length(normalize(pos) - dir); // Star threshold if (dist < 0.0015) { return 1.0; } } } } return 0.0; } vec3 get_sky_color(vec3 dir, float time_of_day) { // Sky color vec3 sun_dir = get_sun_dir(time_of_day); // Add white dots for stars. Note these flicker and jump due to FXAA float star = is_star_at(dir); // Replaced all clamp(sun_dir, 0, 1) with max(sun_dir, 0) because sun_dir is calculated from sin and cos, which are never > 1 vec3 sky_top = mix( mix( SKY_DUSK_TOP, SKY_NIGHT_TOP, max(sun_dir.z, 0) ), SKY_DAY_TOP, max(-sun_dir.z, 0) ) + star; vec3 sky_mid = mix( mix( SKY_DUSK_MID, SKY_NIGHT_MID, max(sun_dir.z, 0) ), SKY_DAY_MID, max(-sun_dir.z, 0) ); vec3 sky_bot = mix( mix( SKY_DUSK_BOT, SKY_NIGHT_BOT, max(sun_dir.z, 0) ), SKY_DAY_BOT, max(-sun_dir.z, 0) ); vec3 sky_color = mix( mix( sky_mid, sky_bot, pow(max(-dir.z, 0), 0.4) ), sky_top, max(dir.z, 0) ); // Sun const vec3 SUN_HALO_COLOR = vec3(1.0, 0.35, 0.1) * 0.3; const vec3 SUN_SURF_COLOR = vec3(1.0, 0.9, 0.35) * 200.0; vec3 sun_halo = pow(max(dot(dir, -sun_dir) + 0.1, 0.0), 8.0) * SUN_HALO_COLOR; vec3 sun_surf = pow(max(dot(dir, -sun_dir) - 0.0045, 0.0), 1000.0) * SUN_SURF_COLOR; vec3 sun_light = (sun_halo + sun_surf) * clamp(dir.z * 10.0, 0, 1); return sky_color + sun_light; } float fog(vec2 f_pos, vec2 focus_pos) { float dist = distance(f_pos, focus_pos) / view_distance.x; const float min_fog = 0.5; const float max_fog = 1.0; const float diff_fog = 0.5; // max - min return pow(clamp((dist - min_fog) / (diff_fog), 0.0, 1.0), 1.7); }