mod location; mod settlement; // Reexports pub use self::location::Location; pub use self::settlement::Settlement; use crate::{ all::ForestKind, util::{seed_expan, Sampler, StructureGen2d}, CONFIG, }; use common::{ terrain::{BiomeKind, TerrainChunkSize}, vol::VolSize, }; use noise::{BasicMulti, Billow, HybridMulti, MultiFractal, NoiseFn, RidgedMulti, Seedable, SuperSimplex}; use rand::{Rng, SeedableRng}; use rand_chacha::ChaChaRng; use std::{ f32, ops::{Add, Div, Mul, Neg, Sub}, }; use vek::*; pub const WORLD_SIZE: Vec2 = Vec2 { x: 1024, y: 1024 }; pub(crate) struct GenCtx { pub turb_x_nz: SuperSimplex, pub turb_y_nz: SuperSimplex, pub chaos_nz: RidgedMulti, pub alt_nz: HybridMulti, pub hill_nz: SuperSimplex, pub temp_nz: SuperSimplex, // Fresh groundwater (currently has no effect, but should influence humidity) pub dry_nz: BasicMulti, // Humidity noise pub humid_nz : Billow, // Small amounts of noise for simulating rough terrain. pub small_nz: BasicMulti, pub rock_nz: HybridMulti, pub cliff_nz: HybridMulti, pub warp_nz: BasicMulti, pub tree_nz: BasicMulti, pub cave_0_nz: SuperSimplex, pub cave_1_nz: SuperSimplex, pub structure_gen: StructureGen2d, pub region_gen: StructureGen2d, pub cliff_gen: StructureGen2d, } pub struct WorldSim { pub seed: u32, pub(crate) chunks: Vec, pub(crate) locations: Vec, pub(crate) gen_ctx: GenCtx, pub rng: ChaChaRng, } impl WorldSim { pub fn generate(mut seed: u32) -> Self { let mut seed = &mut seed; let mut gen_seed = || { *seed = seed_expan::diffuse(*seed); *seed }; let mut gen_ctx = GenCtx { turb_x_nz: SuperSimplex::new().set_seed(gen_seed()), turb_y_nz: SuperSimplex::new().set_seed(gen_seed()), chaos_nz: RidgedMulti::new().set_octaves(7).set_seed(gen_seed()), hill_nz: SuperSimplex::new().set_seed(gen_seed()), alt_nz: HybridMulti::new() .set_octaves(8) .set_persistence(0.1) .set_seed(gen_seed()), temp_nz: SuperSimplex::new().set_seed(gen_seed()), dry_nz: BasicMulti::new().set_seed(gen_seed()), small_nz: BasicMulti::new().set_octaves(2).set_seed(gen_seed()), rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()), cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()), warp_nz: BasicMulti::new().set_octaves(3).set_seed(gen_seed()), tree_nz: BasicMulti::new() .set_octaves(12) .set_persistence(0.75) .set_seed(gen_seed()), cave_0_nz: SuperSimplex::new().set_seed(gen_seed()), cave_1_nz: SuperSimplex::new().set_seed(gen_seed()), structure_gen: StructureGen2d::new(gen_seed(), 32, 24), region_gen: StructureGen2d::new(gen_seed(), 400, 96), cliff_gen: StructureGen2d::new(gen_seed(), 80, 56), humid_nz: Billow::new() .set_octaves(12) .set_persistence(0.125) .set_frequency(1.0) // .set_octaves(6) // .set_persistence(0.5) .set_seed(gen_seed()), }; let mut chunks = Vec::new(); for x in 0..WORLD_SIZE.x as i32 { for y in 0..WORLD_SIZE.y as i32 { chunks.push(SimChunk::generate(Vec2::new(x, y), &mut gen_ctx)); } } let mut this = Self { seed: *seed, chunks, locations: Vec::new(), gen_ctx, rng: ChaChaRng::from_seed(seed_expan::rng_state(*seed)), }; this.seed_elements(); this } /// Prepare the world for simulation pub fn seed_elements(&mut self) { let mut rng = self.rng.clone(); let cell_size = 16; let grid_size = WORLD_SIZE / cell_size; let loc_count = 100; let mut loc_grid = vec![None; grid_size.product()]; let mut locations = Vec::new(); // Seed the world with some locations for _ in 0..loc_count { let cell_pos = Vec2::new( self.rng.gen::() % grid_size.x, self.rng.gen::() % grid_size.y, ); let wpos = (cell_pos * cell_size + cell_size / 2) .map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| { e as i32 * sz as i32 + sz as i32 / 2 }); locations.push(Location::generate(wpos, &mut rng)); loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1); } // Find neighbours let mut loc_clone = locations .iter() .map(|l| l.center) .enumerate() .collect::>(); for i in 0..locations.len() { let pos = locations[i].center; loc_clone.sort_by_key(|(_, l)| l.distance_squared(pos)); loc_clone.iter().skip(1).take(2).for_each(|(j, _)| { locations[i].neighbours.insert(*j); locations[*j].neighbours.insert(i); }); } // Simulate invasion! let invasion_cycles = 25; for _ in 0..invasion_cycles { for i in 0..grid_size.x { for j in 0..grid_size.y { if loc_grid[j * grid_size.x + i].is_none() { const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1]; let idx = self.rng.gen::() % 4; let loc = Vec2::new(i as i32 + R_COORDS[idx], j as i32 + R_COORDS[idx + 1]) .map(|e| e as usize); loc_grid[j * grid_size.x + i] = loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten(); } } } } // Place the locations onto the world let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2); for i in 0..WORLD_SIZE.x { for j in 0..WORLD_SIZE.y { let chunk_pos = Vec2::new(i as i32, j as i32); let block_pos = Vec2::new( chunk_pos.x * TerrainChunkSize::SIZE.x as i32, chunk_pos.y * TerrainChunkSize::SIZE.y as i32, ); let _cell_pos = Vec2::new(i / cell_size, j / cell_size); // Find the distance to each region let near = gen.get(chunk_pos); let mut near = near .iter() .map(|(pos, seed)| RegionInfo { chunk_pos: *pos, block_pos: pos.map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| { e * sz as i32 }), dist: (pos - chunk_pos).map(|e| e as f32).magnitude(), seed: *seed, }) .collect::>(); // Sort regions based on distance near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap()); let nearest_cell_pos = near[0].chunk_pos.map(|e| e as usize) / cell_size; self.get_mut(chunk_pos).unwrap().location = loc_grid .get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x) .cloned() .unwrap_or(None) .map(|loc_idx| LocationInfo { loc_idx, near }); let town_size = 200; let in_town = self .get(chunk_pos) .unwrap() .location .as_ref() .map(|l| { locations[l.loc_idx].center.distance_squared(block_pos) < town_size * town_size }) .unwrap_or(false); if in_town { self.get_mut(chunk_pos).unwrap().spawn_rate = 0.0; } } } self.rng = rng; self.locations = locations; } pub fn get(&self, chunk_pos: Vec2) -> Option<&SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize]) } else { None } } pub fn get_mut(&mut self, chunk_pos: Vec2) -> Option<&mut SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&mut self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize]) } else { None } } pub fn get_base_z(&self, chunk_pos: Vec2) -> Option { self.get(chunk_pos).and_then(|_| { (0..2) .map(|i| (0..2).map(move |j| (i, j))) .flatten() .map(|(i, j)| { self.get(chunk_pos + Vec2::new(i, j)) .map(|c| c.get_base_z()) }) .flatten() .fold(None, |a: Option, x| a.map(|a| a.min(x)).or(Some(x))) }) } pub fn get_interpolated(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Add + Mul, F: FnMut(&SimChunk) -> T, { let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| { e as f64 / sz as f64 }); let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { let x2 = x * x; // Catmull-Rom splines let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5; let co1 = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } } pub struct SimChunk { pub chaos: f32, pub alt_base: f32, pub alt: f32, pub temp: f32, pub dryness: f32, pub humidity: f32, pub rockiness: f32, pub is_cliffs: bool, pub near_cliffs: bool, pub tree_density: f32, pub forest_kind: ForestKind, pub spawn_rate: f32, pub location: Option, } #[derive(Copy, Clone)] pub struct RegionInfo { pub chunk_pos: Vec2, pub block_pos: Vec2, pub dist: f32, pub seed: u32, } #[derive(Clone)] pub struct LocationInfo { pub loc_idx: usize, pub near: Vec, } impl SimChunk { fn generate(pos: Vec2, gen_ctx: &mut GenCtx) -> Self { let wposf = (pos * TerrainChunkSize::SIZE.map(|e| e as i32)).map(|e| e as f64); // From 0 to 1.6, but the distribution before the max is from -1 and 1, so there is a 50% // chance that hill will end up at 0. let hill = (0.0 + gen_ctx .hill_nz .get((wposf.div(1_500.0)).into_array()) .mul(1.0) as f32 + gen_ctx .hill_nz .get((wposf.div(500.0)).into_array()) .mul(0.3) as f32) .add(0.3) .max(0.0); // FIXME: Currently unused, but should represent fresh groundwater level. // Should be correlated a little with humidity, somewhat negatively with altitude, // and very negatively with difference in temperature from zero. let dryness = gen_ctx.dry_nz.get( (wposf .add(Vec2::new( gen_ctx .dry_nz .get((wposf.add(10000.0).div(500.0)).into_array()) * 150.0, gen_ctx.dry_nz.get((wposf.add(0.0).div(500.0)).into_array()) * 150.0, )) .div(2_000.0)) .into_array(), ) as f32; // "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value is // from -0.25 * (CONFIG.mountain_scale * 1.1) to 0.25 * (CONFIG.mountain_scale * 0.9), // but value here is from -0.275 to 0.225). let alt_base = (gen_ctx.alt_nz.get((wposf.div(12_000.0)).into_array()) as f32) .sub(0.1) .mul(0.25); // Extension upwards from the base. A positive number from 0 to 1 curved to be maximal at // 0. let alt_main = (gen_ctx.alt_nz.get((wposf.div(2_000.0)).into_array()) as f32) .abs() .powf(1.35); // Calculates the smallest distance along an axis (x, y) from an edge of // the world. This value is maximal at WORLD_SIZE / 2 and minimized at the extremes // (0 or WORLD_SIZE on one or more axes). It then divides the quantity by cell_size, // so the final result is 1 when we are not in a cell along the edge of the world, and // ranges between 0 and 1 otherwise (lower when the chunk is closer to the edge). let map_edge_factor = pos .map2(WORLD_SIZE.map(|e| e as i32), |e, sz| { (sz / 2 - (e - sz / 2).abs()) as f32 / 16.0 }) .reduce_partial_min() .max(0.0) .min(1.0); // chaos produces a value in [0.1, 1.24]. It is a meta-level factor intended to reflect how // "chaotic" the region is--how much weird stuff is going on on this terrain. // // First, we calculate chaos_pre, which is chaos with no filter and no temperature // flattening (so it is between [0, 1.24] instead of [0.1, 1.24]. This is used to break // the cyclic dependency between temperature and altitude (altitude relies on chaos, which // relies on temperature, but we also want temperature to rely on altitude. We recompute // altitude with the temperature incorporated after we figure out temperature). let chaos_pre = (gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) as f32) .add(1.0) .mul(0.5) // [0, 1] * [0.25, 1] = [0, 1] (but probably towards the lower end) .mul( (gen_ctx.chaos_nz.get((wposf.div(6_000.0)).into_array()) as f32) .abs() .max(0.25) .min(1.0), ) // Chaos is always increased by a little when we're on a hill (but remember that hill // is 0 about 50% of the time). // [0, 1] + 0.15 * [0, 1.6] = [0, 1.24] .add(0.15 * hill); // This is the extension upwards from the base added to some extra noise from -1 to 1. // The extra noise is multiplied by alt_main (the base part of the extension) clamped to // be between 0.25 and 1, and made 60% larger (so the extra noise is between -1.6 and 1.6, // and the final noise is never more than 160% or less than 40% of the original noise, // depending on altitude). // Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and // gen_ctx = -1) and 2.6 (if alt_main = 1 and gen_ctx = 1). When the generated small_nz // value hits -0.625 the value crosses 0, so most of the points are above 0. // // Then, we add 1 and divide by 2 to get a value between 0.3 and 1.8. let alt_pre = (0.0 + alt_main + (gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32) .mul(alt_main.max(0.25)) .mul(1.6)) .add(1.0) .mul(0.5); // 0 to 1, hopefully. let humid_base = (gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32) .add(1.0) .mul(0.5) as f32; // Ideally, humidity is correlated negatively with altitude and slightly positively with // dryness. For now we just do "negatively with altitude." We currently opt not to have // it affected by temperature. Negative humidity is lower, positive humidity is higher. // // Because we want to start at 0, rise, and then saturate at 1, we use a cumulative logistic // distribution, calculated as: // // 1/2 + 1/2 * tanh((x - μ) / (2s)) // // where x is the random variable (altitude relative to sea level without mountain // scaling), μ is the altitude where humidity should be at its midpoint (currently set to 0.125), // and s is the scale parameter proportional to the standard deviation σ of the humidity // function of altitude (s = √3/π * σ). Currently we set σ to -0.0625, so we get ~ 68% of // the variation due to altitude between .0625 * mountain_scale above sea level and // 0.1875 * mountain_scale above sea level (it is negative to make the distribution higher when // the altitude is lower). let humid_alt_sigma = -0.0625; let humid_alt_2s = 3.0f32.sqrt().mul(f32::consts::FRAC_2_PI).mul(humid_alt_sigma); let humid_alt_mu = 0.125; // We ignore sea level because we actually want to be relative to sea level here and want // things in CONFIG.mountain_scale units, and we are using the version of chaos that doesn't // know about temperature. Otherwise, this is a correct altitude calculation. let humid_alt_pre = (alt_base + alt_pre.mul(chaos_pre.max(0.1))) * map_edge_factor; let humid_alt = humid_alt_pre .sub(humid_alt_mu) .div(humid_alt_2s) .tanh() .mul(0.5) .add(0.5); // The log-logistic distribution (a variable whose logarithm has a logistic distribution) is often // used to model stream flow rates and precipitation as a tractable analogue of a log-normal // distribution. We use it here for humidity. // // Specifically, we treat altitude // // For a log-logistic distribution, you have // // X = e^ // // where α is a scale parameter (the median of the distribution, where μ = ln(α)), β is a // shape parameter related to the standard deviation (s = 1 / β) // // Start with e^(altitude difference) to get values in (0, 1) for low altitudes (-∞, e) and // in [1, ∞) for high altitudes [e, ∞). // // The produced variable is in a log-normal distribution (that is, X's *logarithm* is // normally distributed). // // https://en.wikipedia.org/wiki/Log-logistic_distribution // // A log-logistic distribution represents the probability distribution of a random variable // whose logarithm has a logistic distribution. // // That is, ln X varies smoothly from 0 to 1 along an S-curve. // // Now we can // // 1 to // for high. // We want negative values for altitude to represent // // e^-2 // // (alt mag)^(climate mag) // // (2)^(-1) // // Now we just take a (currently) unweighted average of our randomly generated base humidity // (from scaled to be from 0 to 1) and our randomly generated "base" humidity. We can // adjust this weighting factor as desired. let humid_weight = 3.0; let humid_alt_weight = 1.0; let humidity = humid_base.mul(humid_weight) .add(humid_alt.mul(humid_alt_weight) // Adds some noise to the humidity effect of altitude to dampen it. .mul(gen_ctx.small_nz.get((wposf.div(10240.0)).into_array()) as f32) .mul(0.5) .add(0.5)) .div(humid_weight + humid_alt_weight); let temp_base = gen_ctx.temp_nz.get((wposf.div(12000.0)).into_array()) as f32; // We also correlate temperature negatively with altitude using a different computed factor // that we use for humidity (and with different weighting). We could definitely make the // distribution different for temperature as well. let temp_alt_sigma = -0.0625; let temp_alt_2s = 3.0f32.sqrt().mul(f32::consts::FRAC_2_PI).mul(temp_alt_sigma); let temp_alt_mu = 0.0; // Scaled to [-1, 1] already. let temp_alt = humid_alt_pre .sub(temp_alt_mu) .div(temp_alt_2s) .tanh(); let temp_weight = 4.0; let temp_alt_weight = 1.0; let temp = temp_base.mul(temp_weight) .add(temp_alt.mul(temp_alt_weight)) .div(temp_weight + temp_alt_weight); // Now, we finish the computation of chaos incorporating temperature information, producing // a value in [0.1, 1.24]. let chaos = chaos_pre // [0, 1.24] * [0.35, 1.0] = [0, 1.24]. // Sharply decreases (towards 0.35) when temperature is near desert_temp (from below), // then saturates just before it actually becomes desert. Otherwise stays at 1. .mul( temp.sub(CONFIG.desert_temp) .neg() .mul(12.0) .max(0.35) .min(1.0), ) // We can't have *no* chaos! .max(0.1); // Now we can recompute altitude using the correct verison of chaos. // We multiply by chaos clamped to [0.1, 1.24] to get a value between 0.03 and 2.232 for // alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea level to get // an adjusted value, then multiply the whole thing by map_edge_factor (TODO: compute final bounds). let alt_base = alt_base.mul(CONFIG.mountain_scale); let alt = CONFIG.sea_level .add(alt_base) .add(alt_pre.mul(chaos).mul(CONFIG.mountain_scale)) .mul(map_edge_factor); let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2; let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()) as f32) .mul(1.5) .add(1.0) .mul(0.5) .mul(1.2 - chaos * 0.95) .add(0.05) .max(0.0) .min(1.0) .mul(0.5) // Tree density should go (by a lot) with humidity. .add(humidity.mul(0.5)) // No trees in the ocean (currently), no trees in true deserts. .mul(if alt > CONFIG.sea_level + 5.0 && humidity > CONFIG.desert_hum { 1.0 } else { 0.0 }) .max(0.0); Self { chaos, alt_base, alt, temp, dryness, humidity, rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32) .sub(0.1) .mul(1.3) .max(0.0), is_cliffs: cliff > 0.5 && dryness > 0.05 && alt > CONFIG.sea_level + 5.0 && dryness.abs() > 0.075, near_cliffs: cliff > 0.25, tree_density, forest_kind: if temp > 0.0 { if temp > CONFIG.desert_temp { // println!("Any desert: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density); if humidity > CONFIG.jungle_hum { // Forests in desert temperatures with extremely high humidity // should probably be different from palm trees, but we use them // for now. ForestKind::Palm } else if humidity > CONFIG.forest_hum { ForestKind::Palm } else { // Low but not desert humidity, so we should really have some other // terrain... /* if humidity < CONFIG.desert_hum { println!("True desert: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density); } */ ForestKind::Savannah } } else if temp > CONFIG.tropical_temp { if humidity > CONFIG.jungle_hum { /* if tree_density > 0.0 { println!("Mangroves: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density); } */ ForestKind::Mangrove } else if humidity > CONFIG.forest_hum { // NOTE: Probably the wrong kind of tree for this climate. ForestKind::Oak } else { // Low but not desert... need something besides savannah. ForestKind::Savannah } } else { if humidity > CONFIG.jungle_hum { // Temperate climate with jungle humidity... // https://en.wikipedia.org/wiki/Humid_subtropical_climates are often // densely wooded and full of water. Semitropical rainforests, basically. // For now we just treet them like other rainforests. /* if tree_density > 0.0 { println!("Mangroves (forest): {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density); } */ ForestKind::Mangrove } else if humidity > CONFIG.forest_hum { // Moderate climate, moderate humidity. ForestKind::Oak } else { // With moderate temperature and low humidity, we should probably see // something different from savannah, but oh well... ForestKind::Savannah } } } else { // For now we don't take humidity into account for cold climates (but we really // should!) except that we make sure we only have snow pines when there is snow. if temp <= CONFIG.snow_temp && humidity > CONFIG.forest_hum { /* if tree_density > 0.0 { println!("SnowPine: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density); } */ ForestKind::SnowPine } else { ForestKind::Pine } }, spawn_rate: 1.0, location: None, } } pub fn get_base_z(&self) -> f32 { self.alt - self.chaos * 50.0 - 16.0 } pub fn get_name(&self, world: &WorldSim) -> Option { if let Some(loc) = &self.location { Some(world.locations[loc.loc_idx].name().to_string()) } else { None } } pub fn get_biome(&self) -> BiomeKind { if self.alt < CONFIG.sea_level { BiomeKind::Ocean } else if self.chaos > 0.6 { BiomeKind::Mountain } else if self.temp > CONFIG.desert_temp { BiomeKind::Desert } else if self.temp < CONFIG.snow_temp { BiomeKind::Snowlands } else if self.tree_density > 0.65 { BiomeKind::Forest } else { BiomeKind::Grassland } } }