#version 420 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN // #define HAS_SHADOW_MAPS #include #include #include #include layout(location = 0) in uint v_pos_norm; // in uint v_col_light; layout(location = 1) in uint v_atlas_pos; layout (std140, set = 3, binding = 0) uniform u_locals { mat4 model_mat; // TODO: consider whether these need to be signed ivec4 atlas_offs; float load_time; }; //struct ShadowLocals { // mat4 shadowMatrices; // mat4 texture_mat; //}; // //layout (std140) //uniform u_light_shadows { // ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192]; //}; layout(location = 0) out vec3 f_pos; // #ifdef FLUID_MODE_SHINY layout(location = 1) flat out uint f_pos_norm; layout(location = 2) flat out float f_load_time; // #if (SHADOW_MODE == SHADOW_MODE_MAP) // out vec4 sun_pos; // #endif // #endif // out float f_alt; // out vec4 f_shadow; // out vec3 f_col; // out vec3 f_chunk_pos; // out float f_ao; /*centroid */layout(location = 3) out vec2 f_uv_pos; // out vec3 light_pos[2]; // out float f_light; // uniform sampler2DRect t_col_light; const float EXTRA_NEG_Z = 32768.0; void main() { // over it (if this vertex to see if it intersects. // f_chunk_pos = vec3(ivec3((uvec3(v_pos_norm) >> uvec3(0, 6, 12)) & uvec3(0x3Fu, 0x3Fu, 0xFFFFu)) - ivec3(0, 0, EXTRA_NEG_Z)); vec3 f_chunk_pos = vec3(v_pos_norm & 0x3Fu, (v_pos_norm >> 6) & 0x3Fu, float((v_pos_norm >> 12) & 0xFFFFu) - EXTRA_NEG_Z); f_pos = (model_mat * vec4(f_chunk_pos, 1.0)).xyz - focus_off.xyz; f_load_time = load_time; vec3 v_pos = f_pos; // Terrain 'pop-in' effect #ifndef EXPERIMENTAL_BAREMINIMUM #ifndef EXPERIMENTAL_NOTERRAINPOP v_pos.z -= 250.0 * (1.0 - min(1.0001 - 0.02 / pow(time_since(load_time), 10.0), 1.0)); // f_pos.z -= min(32.0, 25.0 * pow(distance(focus_pos.xy, f_pos.xy) / view_distance.x, 20.0)); #endif #endif #ifdef EXPERIMENTAL_CURVEDWORLD v_pos.z -= pow(distance(v_pos.xy + focus_off.xy, focus_pos.xy + focus_off.xy) * 0.05, 2); #endif // vec3 light_col = vec3( // hash(floor(vec4(f_chunk_pos.x, 0, 0, 0))), // hash(floor(vec4(0, f_chunk_pos.y, 0, 1))), // hash(floor(vec4(0, 0, f_chunk_pos.z, 2))) // ); // f_col = light_col;// f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0; // f_light = 1.0;//float(v_col_light & 0x3Fu) / 64.0; // f_ao = 1.0;//float((v_col_light >> 6u) & 3u) / 4.0; // f_col = f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0; // f_light = float(v_col_light & 0x3Fu) / 64.0; // f_ao = float((v_col_light >> 6u) & 3u) / 4.0; // for (uint i = 0u; i < 1u/*light_shadow_count.z*/; ++i) { // light_pos[i] = vec3(shadowMats[i].texture_mat * vec4(f_pos, 1.0)); // } // vec2 texSize = textureSize(t_col_light, 0); f_uv_pos = vec2((uvec2(v_atlas_pos) >> uvec2(0, 16)) & uvec2(0xFFFFu, 0xFFFFu)); // #if (SHADOW_MODE == SHADOW_MODE_MAP) // // for (uint i = 0u; i < light_shadow_count.z; ++i) { // // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/; // // } // sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/; // // #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // // vec4 sun_pos = vec4(0.0); // #endif // #ifdef FLUID_MODE_SHINY f_pos_norm = v_pos_norm; // #endif // Also precalculate shadow texture and estimated terrain altitude. // f_alt = alt_at(f_pos.xy); // f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); // IDEA: Cast a ray from the vertex to the camera (if this vertex is above the camera) or from the camera to the vertex (if this // vertex is below the camera) to see where it intersects the plane of water. All of this only applies if either the terrain // vertex is in water, or the camera is in water. // // If an intersection is found, refract the ray across the barrier using the correct ratio of indices of refraction (1 / N_WATER // if the vertex is above the camera [ray is going from air to water], N_WATER if the camera is above the vertex // [ray is going from water to air]). // // In order to make sure that terrain and other objects below such an interface are properly renered, we then "un-refract" by // reversing the refracted vector, and multiplying that by the distance from the object from which we cast the ray to the // intersectng point, in order to make the object appear to the viewer where it should after refraction. // bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u); // // TODO: Measure real water surface altitude here. // float surfaceAlt = faces_fluid ? max(ceil(f_pos.z), floor(f_alt)) : /*floor(f_alt);*/mix(view_distance.z, min(f_alt, floor(alt_at_real(cam_pos.xy))), medium.x); // vec3 wRayinitial = f_pos; // cam_pos.z < f_pos.z ? f_pos : cam_pos.xyz; // vec3 wRayfinal = cam_pos.xyz; // cam_pos.z < f_pos.z ? cam_pos.xyz : f_pos; // vec3 wRayNormal = surfaceAlt < wRayinitial.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); // float n_camera = mix(1.0, 1.3325, medium.x); // float n_vertex = faces_fluid ? 1.3325 : 1.0; // float n1 = n_vertex; // cam_pos.z < f_pos.z ? n_vertex : n_camera; // float n2 = n_camera; // cam_pos.z < f_pos.z ? n_camera : n_vertex; // float wRayLength0 = length(wRayfinal - wRayinitial); // vec3 wRayDir = (wRayfinal - wRayinitial) / wRayLength0; // vec3 wPoint = wRayfinal; // bool wIntersectsSurface = IntersectRayPlane(wRayinitial, wRayDir, vec3(0.0, 0.0, surfaceAlt), -wRayNormal, wPoint); // float wRayLength = length(wPoint - wRayinitial); // wPoint = wRayLength < wRayLength0 ? wPoint : wRayfinal; // wRayLength = min(wRayLength, wRayLength0); // min(max_length, dot(wRayfinal - wpos, defaultpos - wpos)); // // vec3 wRayDir2 = (wRayfinal - wRayinitial) / wRayLength; // vec3 wRayDir3 = (dot(wRayDir, wRayNormal) < 0.0 && wIntersectsSurface) ? refract(wRayDir, wRayNormal, n2 / n1) : wRayDir; // // wPoint -= wRayDir3 * wRayLength * n2 / n1; // vec3 newRay = dot(wRayDir, wRayNormal) < 0.0 && wIntersectsSurface ? wPoint - wRayDir3 * wRayLength * n2 / n1 : f_pos;// - (wRayfinal - wPoint) * n2 / n1; // wPoint + n2 * (wRayfinal - wPoint) - n2 / n1 * wRayLength * wRayDir3; #ifdef HAS_SHADOW_MAPS gl_Position = /*all_mat*/shadowMatrices/*texture_mat*/ * vec4(v_pos/*newRay*/, 1); gl_Position.z = clamp(gl_Position.z, -abs(gl_Position.w), abs(gl_Position.w)); #else gl_Position = all_mat * vec4(v_pos/*newRay*/, 1); #endif // gl_Position.y /= gl_Position.w; // gl_Position.w = 1.0; // gl_Position.z = -gl_Position.z; // gl_Position.z = -gl_Position.z / gl_Position.w; // gl_Position.z = -gl_Position.z / gl_Position.w; // gl_Position.z = -gl_Position.z *gl_Position.w; // gl_Position.z = gl_Position.z / 100.0; // gl_Position.z = gl_Position.z / 10000.0; // gl_Position.z = -gl_Position.z / 100.0; // gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); // gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); }