#version 330 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include #include #include in uint v_pos_norm; in uint v_col_light; layout (std140) uniform u_locals { vec3 model_offs; float load_time; }; out vec3 f_pos; out vec3 f_chunk_pos; flat out uint f_pos_norm; // out float f_alt; // out vec4 f_shadow; out vec3 f_col; out float f_light; out float f_ao; const int EXTRA_NEG_Z = 32768; void main() { // over it (if this vertex to see if it intersects. f_chunk_pos = vec3(ivec3((uvec3(v_pos_norm) >> uvec3(0, 6, 12)) & uvec3(0x3Fu, 0x3Fu, 0xFFFFu)) - ivec3(0, 0, EXTRA_NEG_Z)); f_pos = f_chunk_pos + model_offs; // f_pos.z -= 250.0 * (1.0 - min(1.0001 - 0.02 / pow(tick.x - load_time, 10.0), 1.0)); // f_pos.z -= min(32.0, 25.0 * pow(distance(focus_pos.xy, f_pos.xy) / view_distance.x, 20.0)); f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0; f_light = float(v_col_light & 0x3Fu) / 64.0; f_ao = float((v_col_light >> 6u) & 3u) / 4.0; f_pos_norm = v_pos_norm; // Also precalculate shadow texture and estimated terrain altitude. // f_alt = alt_at(f_pos.xy); // f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); // IDEA: Cast a ray from the vertex to the camera (if this vertex is above the camera) or from the camera to the vertex (if this // vertex is below the camera) to see where it intersects the plane of water. All of this only applies if either the terrain // vertex is in water, or the camera is in water. // // If an intersection is found, refract the ray across the barrier using the correct ratio of indices of refraction (1 / N_WATER // if the vertex is above the camera [ray is going from air to water], N_WATER if the camera is above the vertex // [ray is going from water to air]). // // In order to make sure that terrain and other objects below such an interface are properly renered, we then "un-refract" by // reversing the refracted vector, and multiplying that by the distance from the object from which we cast the ray to the // intersectng point, in order to make the object appear to the viewer where it should after refraction. // bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u); // // TODO: Measure real water surface altitude here. // float surfaceAlt = faces_fluid ? max(ceil(f_pos.z), floor(f_alt)) : /*floor(f_alt);*/mix(view_distance.z, min(f_alt, floor(alt_at_real(cam_pos.xy))), medium.x); // vec3 wRayinitial = f_pos; // cam_pos.z < f_pos.z ? f_pos : cam_pos.xyz; // vec3 wRayfinal = cam_pos.xyz; // cam_pos.z < f_pos.z ? cam_pos.xyz : f_pos; // vec3 wRayNormal = surfaceAlt < wRayinitial.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); // float n_camera = mix(1.0, 1.3325, medium.x); // float n_vertex = faces_fluid ? 1.3325 : 1.0; // float n1 = n_vertex; // cam_pos.z < f_pos.z ? n_vertex : n_camera; // float n2 = n_camera; // cam_pos.z < f_pos.z ? n_camera : n_vertex; // float wRayLength0 = length(wRayfinal - wRayinitial); // vec3 wRayDir = (wRayfinal - wRayinitial) / wRayLength0; // vec3 wPoint = wRayfinal; // bool wIntersectsSurface = IntersectRayPlane(wRayinitial, wRayDir, vec3(0.0, 0.0, surfaceAlt), -wRayNormal, wPoint); // float wRayLength = length(wPoint - wRayinitial); // wPoint = wRayLength < wRayLength0 ? wPoint : wRayfinal; // wRayLength = min(wRayLength, wRayLength0); // min(max_length, dot(wRayfinal - wpos, defaultpos - wpos)); // // vec3 wRayDir2 = (wRayfinal - wRayinitial) / wRayLength; // vec3 wRayDir3 = (dot(wRayDir, wRayNormal) < 0.0 && wIntersectsSurface) ? refract(wRayDir, wRayNormal, n2 / n1) : wRayDir; // // wPoint -= wRayDir3 * wRayLength * n2 / n1; // vec3 newRay = dot(wRayDir, wRayNormal) < 0.0 && wIntersectsSurface ? wPoint - wRayDir3 * wRayLength * n2 / n1 : f_pos;// - (wRayfinal - wPoint) * n2 / n1; // wPoint + n2 * (wRayfinal - wPoint) - n2 / n1 * wRayLength * wRayDir3; gl_Position = all_mat * vec4(f_pos/*newRay*/, 1); // gl_Position.z = -gl_Position.z / gl_Position.w; // gl_Position.z = -gl_Position.z / 100.0; // gl_Position.z = -gl_Position.z / 100.0; gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); }