use std::ops::{Add, Div, Mul, Neg, Sub}; use vek::*; use noise::{ BasicMulti, RidgedMulti, SuperSimplex, HybridMulti, MultiFractal, NoiseFn, Seedable, }; use common::{ terrain::TerrainChunkSize, vol::VolSize, }; use crate::util::StructureGen2d; pub const WORLD_SIZE: Vec2 = Vec2 { x: 1024, y: 1024 }; pub(crate) struct GenCtx { pub turb_x_nz: BasicMulti, pub turb_y_nz: BasicMulti, pub chaos_nz: RidgedMulti, pub alt_nz: HybridMulti, pub hill_nz: SuperSimplex, pub temp_nz: SuperSimplex, pub small_nz: BasicMulti, pub rock_nz: HybridMulti, pub warp_nz: BasicMulti, pub tree_nz: BasicMulti, pub cave_0_nz: SuperSimplex, pub cave_1_nz: SuperSimplex, pub tree_gen: StructureGen2d, } pub struct WorldSim { pub seed: u32, pub(crate) chunks: Vec, pub(crate) gen_ctx: GenCtx, } impl WorldSim { pub fn generate(seed: u32) -> Self { let mut gen_ctx = GenCtx { turb_x_nz: BasicMulti::new().set_seed(seed + 0), turb_y_nz: BasicMulti::new().set_seed(seed + 1), chaos_nz: RidgedMulti::new().set_octaves(7).set_seed(seed + 2), hill_nz: SuperSimplex::new().set_seed(seed + 3), alt_nz: HybridMulti::new() .set_octaves(8) .set_persistence(0.1) .set_seed(seed + 4), temp_nz: SuperSimplex::new().set_seed(seed + 5), small_nz: BasicMulti::new().set_octaves(2).set_seed(seed + 6), rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(seed + 7), warp_nz: BasicMulti::new().set_octaves(3).set_seed(seed + 8), tree_nz: BasicMulti::new() .set_octaves(12) .set_persistence(0.75) .set_seed(seed + 9), cave_0_nz: SuperSimplex::new().set_seed(seed + 10), cave_1_nz: SuperSimplex::new().set_seed(seed + 11), tree_gen: StructureGen2d::new(seed, 24, 16), }; let mut chunks = Vec::new(); for x in 0..WORLD_SIZE.x as u32 { for y in 0..WORLD_SIZE.y as u32 { chunks.push(SimChunk::generate(Vec2::new(x, y), &mut gen_ctx)); } } Self { seed, chunks, gen_ctx, } } pub fn get(&self, chunk_pos: Vec2) -> Option<&SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e < sz as u32) .reduce_and() { Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize]) } else { None } } pub fn get_base_z(&self, chunk_pos: Vec2) -> Option { self.get(chunk_pos).and_then(|_| { (0..2) .map(|i| (0..2).map(move |j| (i, j))) .flatten() .map(|(i, j)| { self.get(chunk_pos + Vec2::new(i, j)) .map(|c| c.get_base_z()) }) .flatten() .fold(None, |a: Option, x| a.map(|a| a.min(x)).or(Some(x))) }) } pub fn get_interpolated(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Add + Mul, F: FnMut(&SimChunk) -> T, { let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| { e as f64 / sz as f64 }); let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { let x2 = x * x; // Catmull-Rom splines let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5; let co1 = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| (e.max(0.0) as i32 + q) as u32))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| (e.max(0.0) as i32 + q) as u32))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| (e.max(0.0) as i32 + q) as u32))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| (e.max(0.0) as i32 + q) as u32))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } } pub const SEA_LEVEL: f32 = 128.0; pub const MOUNTAIN_HEIGHT: f32 = 900.0; const Z_TOLERANCE: (f32, f32) = (128.0, 64.0); pub struct SimChunk { pub chaos: f32, pub alt_base: f32, pub alt: f32, pub temp: f32, pub rockiness: f32, pub tree_density: f32, } impl SimChunk { fn generate(pos: Vec2, gen_ctx: &mut GenCtx) -> Self { let wposf = (pos * Vec2::from(TerrainChunkSize::SIZE)).map(|e| e as f64); let hill = (0.0 + gen_ctx .hill_nz .get((wposf.div(3_500.0)).into_array()) .mul(1.0) as f32 + gen_ctx .hill_nz .get((wposf.div(1_000.0)).into_array()) .mul(0.3) as f32) .add(0.3) .max(0.0); let chaos = (gen_ctx.chaos_nz.get((wposf.div(2_000.0)).into_array()) as f32) .add(1.0) .mul(0.5) .powf(1.5) .add(0.1 * hill); let chaos = chaos + chaos.mul(16.0).sin().mul(0.02); let alt_base = gen_ctx.alt_nz.get((wposf.div(6_000.0)).into_array()) as f32; let alt_base = alt_base .mul(0.4) .add(alt_base.mul(128.0).sin().mul(0.005)) .mul(800.0); let alt_main = gen_ctx.alt_nz.get((wposf.div(3_000.0)).into_array()) as f32; let alt = SEA_LEVEL + alt_base + (0.0 + alt_main + gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32 * alt_main.max(0.05) * chaos * 1.6) .add(1.0) .mul(0.5) .mul(chaos) .mul(MOUNTAIN_HEIGHT); Self { chaos, alt_base, alt, temp: (gen_ctx.temp_nz.get((wposf.div(8192.0)).into_array()) as f32), rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32) .sub(0.1) .mul(1.2) .max(0.0), tree_density: (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()) as f32) .add(1.0) .mul(0.5) .mul(1.0 - chaos * 0.85) .add(0.1) .mul(if alt > SEA_LEVEL + 2.0 { 1.0 } else { 0.0 }), } } pub fn get_base_z(&self) -> f32 { self.alt - Z_TOLERANCE.0 * self.chaos } pub fn get_min_z(&self) -> f32 { self.alt - Z_TOLERANCE.0 * (self.chaos + 0.3) } pub fn get_max_z(&self) -> f32 { (self.alt + Z_TOLERANCE.1).max(SEA_LEVEL + 1.0) } }