use crate::{ mesh::Meshable, render::{Consts, Globals, Mesh, Model, Renderer, TerrainLocals, TerrainPipeline}, }; use client::Client; use common::{ terrain::{TerrainChunkSize, TerrainMap}, vol::{SampleVol, VolSize}, volumes::vol_map_2d::VolMap2dErr, }; use frustum_query::frustum::Frustum; use std::{collections::HashMap, i32, ops::Mul, sync::mpsc, time::Duration}; use vek::*; struct TerrainChunk { // GPU data model: Model, locals: Consts, visible: bool, z_bounds: (f32, f32), } struct ChunkMeshState { pos: Vec2, started_tick: u64, active_worker: bool, } /// A type produced by mesh worker threads corresponding to the position and mesh of a chunk. struct MeshWorkerResponse { pos: Vec2, z_bounds: (f32, f32), mesh: Mesh, started_tick: u64, } /// Function executed by worker threads dedicated to chunk meshing. fn mesh_worker( pos: Vec2, z_bounds: (f32, f32), started_tick: u64, volume: >>::Sample, range: Aabb, ) -> MeshWorkerResponse { MeshWorkerResponse { pos, z_bounds, mesh: volume.generate_mesh(range), started_tick, } } pub struct Terrain { chunks: HashMap, TerrainChunk>, // The mpsc sender and receiver used for talking to meshing worker threads. // We keep the sender component for no reason other than to clone it and send it to new workers. mesh_send_tmp: mpsc::Sender, mesh_recv: mpsc::Receiver, mesh_todo: HashMap, ChunkMeshState>, } impl Terrain { pub fn new() -> Self { // Create a new mpsc (Multiple Produced, Single Consumer) pair for communicating with // worker threads that are meshing chunks. let (send, recv) = mpsc::channel(); Self { chunks: HashMap::new(), mesh_send_tmp: send, mesh_recv: recv, mesh_todo: HashMap::new(), } } /// Maintain terrain data. To be called once per tick. pub fn maintain( &mut self, renderer: &mut Renderer, client: &Client, focus_pos: Vec3, loaded_distance: f32, view_mat: Mat4, proj_mat: Mat4, ) { let current_tick = client.get_tick(); // Add any recently created or changed chunks to the list of chunks to be meshed. for pos in client .state() .changes() .new_chunks .iter() .chain(client.state().changes().changed_chunks.iter()) { // TODO: ANOTHER PROBLEM HERE! // What happens if the block on the edge of a chunk gets modified? We need to spawn // a mesh worker to remesh its neighbour(s) too since their ambient occlusion and face // elision information changes too! for i in -1..2 { for j in -1..2 { let pos = pos + Vec2::new(i, j); if !self.chunks.contains_key(&pos) { let mut neighbours = true; for i in -1..2 { for j in -1..2 { neighbours &= client .state() .terrain() .get_key(pos + Vec2::new(i, j)) .is_some(); } } if neighbours { self.mesh_todo.entry(pos).or_insert(ChunkMeshState { pos, started_tick: current_tick, active_worker: false, }); } } } } } // Remove any models for chunks that have been recently removed. for pos in &client.state().changes().removed_chunks { self.chunks.remove(pos); self.mesh_todo.remove(pos); } for todo in self .mesh_todo .values_mut() // Only spawn workers for meshing jobs without an active worker already. .filter(|todo| !todo.active_worker) { // Find the area of the terrain we want. Because meshing needs to compute things like // ambient occlusion and edge elision, we also need the borders of the chunk's // neighbours too (hence the `- 1` and `+ 1`). let aabr = Aabr { min: todo .pos .map2(TerrainMap::chunk_size(), |e, sz| e * sz as i32 - 1), max: todo .pos .map2(TerrainMap::chunk_size(), |e, sz| (e + 1) * sz as i32 + 1), }; // Copy out the chunk data we need to perform the meshing. We do this by taking a // sample of the terrain that includes both the chunk we want and its neighbours. let volume = match client.state().terrain().sample(aabr) { Ok(sample) => sample, // Either this chunk or its neighbours doesn't yet exist, so we keep it in the // queue to be processed at a later date when we have its neighbours. Err(VolMap2dErr::NoSuchChunk) => return, _ => panic!("Unhandled edge case"), }; // The region to actually mesh let min_z = volume .iter() .fold(i32::MAX, |min, (_, chunk)| chunk.get_min_z().min(min)); let max_z = volume .iter() .fold(i32::MIN, |max, (_, chunk)| chunk.get_max_z().max(max)); let aabb = Aabb { min: Vec3::from(aabr.min) + Vec3::unit_z() * (min_z - 1), max: Vec3::from(aabr.max) + Vec3::unit_z() * (max_z + 1), }; // Clone various things so that they can be moved into the thread. let send = self.mesh_send_tmp.clone(); let pos = todo.pos; // Queue the worker thread. client.thread_pool().execute(move || { let _ = send.send(mesh_worker( pos, (min_z as f32, max_z as f32), current_tick, volume, aabb, )); }); todo.active_worker = true; } // Receive a chunk mesh from a worker thread and upload it to the GPU, then store it. // Only pull out one chunk per frame to avoid an unacceptable amount of blocking lag due // to the GPU upload. That still gives us a 60 chunks / second budget to play with. if let Ok(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)) { match self.mesh_todo.get(&response.pos) { // It's the mesh we want, insert the newly finished model into the terrain model // data structure (convert the mesh to a model first of course). Some(todo) if response.started_tick == todo.started_tick => { self.chunks.insert( response.pos, TerrainChunk { model: renderer .create_model(&response.mesh) .expect("Failed to upload chunk mesh to the GPU!"), locals: renderer .create_consts(&[TerrainLocals { model_offs: Vec3::from( response.pos.map2(TerrainMap::chunk_size(), |e, sz| { e as f32 * sz as f32 }), ) .into_array(), }]) .expect("Failed to upload chunk locals to the GPU!"), visible: false, z_bounds: response.z_bounds, }, ); } // Chunk must have been removed, or it was spawned on an old tick. Drop the mesh // since it's either out of date or no longer needed. _ => {} } } // Construct view frustum let frustum = Frustum::from_modelview_and_projection( &view_mat.into_col_array(), &proj_mat.into_col_array(), ); // Update chunk visibility let chunk_sz = TerrainChunkSize::SIZE.x as f32; for (pos, chunk) in &mut self.chunks { let chunk_pos = pos.map(|e| e as f32 * chunk_sz); // Limit focus_pos to chunk bounds and ensure the chunk is within the fog boundary let nearest_in_chunk = Vec2::from(focus_pos).clamped(chunk_pos, chunk_pos + chunk_sz); let in_range = Vec2::::from(focus_pos).distance_squared(nearest_in_chunk) < loaded_distance.powf(2.0); // Ensure the chunk is within the view frustrum let chunk_mid = Vec3::new( chunk_pos.x + chunk_sz / 2.0, chunk_pos.y + chunk_sz / 2.0, (chunk.z_bounds.0 + chunk.z_bounds.1) * 0.5, ); let chunk_radius = (chunk.z_bounds.1 - chunk.z_bounds.0) .max(chunk_sz / 2.0) .powf(2.0) .mul(2.0) .sqrt(); let in_frustum = frustum.sphere_intersecting( &chunk_mid.x, &chunk_mid.y, &chunk_mid.z, &chunk_radius, ); chunk.visible = in_range && in_frustum; } } pub fn render(&self, renderer: &mut Renderer, globals: &Consts) { for (pos, chunk) in &self.chunks { if chunk.visible { renderer.render_terrain_chunk(&chunk.model, globals, &chunk.locals); } } } }