use crate::{ comp::{Gliding, Jumping, MoveDir, OnGround, Ori, Pos, Rolling, Stats, Vel}, state::DeltaTime, terrain::TerrainMap, vol::{ReadVol, Vox}, }; use specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage}; use vek::*; const GRAVITY: f32 = 9.81 * 4.0; const FRIC_GROUND: f32 = 0.15; const FRIC_AIR: f32 = 0.015; const HUMANOID_ACCEL: f32 = 70.0; const HUMANOID_SPEED: f32 = 120.0; const HUMANOID_AIR_ACCEL: f32 = 10.0; const HUMANOID_AIR_SPEED: f32 = 100.0; const HUMANOID_JUMP_ACCEL: f32 = 16.0; const ROLL_ACCEL: f32 = 120.0; const ROLL_SPEED: f32 = 550.0; const GLIDE_ACCEL: f32 = 15.0; const GLIDE_SPEED: f32 = 45.0; // Gravity is 9.81 * 4, so this makes gravity equal to .15 const GLIDE_ANTIGRAV: f32 = 9.81 * 3.95; // Integrates forces, calculates the new velocity based off of the old velocity // dt = delta time // lv = linear velocity // damp = linear damping // Friction is a type of damping. fn integrate_forces(dt: f32, mut lv: Vec3, damp: f32) -> Vec3 { lv.z = (lv.z - GRAVITY * dt).max(-50.0); let linear_damp = (1.0 - dt * damp).max(0.0); lv * linear_damp } /// This system applies forces and calculates new positions and velocities. pub struct Sys; impl<'a> System<'a> for Sys { type SystemData = ( Entities<'a>, ReadExpect<'a, TerrainMap>, Read<'a, DeltaTime>, ReadStorage<'a, MoveDir>, ReadStorage<'a, Gliding>, ReadStorage<'a, Stats>, WriteStorage<'a, Jumping>, WriteStorage<'a, Rolling>, WriteStorage<'a, OnGround>, WriteStorage<'a, Pos>, WriteStorage<'a, Vel>, WriteStorage<'a, Ori>, ); fn run( &mut self, ( entities, terrain, dt, move_dirs, glidings, stats, mut jumpings, mut rollings, mut on_grounds, mut positions, mut velocities, mut orientations, ): Self::SystemData, ) { // Apply movement inputs for (entity, stats, move_dir, gliding, mut pos, mut vel, mut ori) in ( &entities, &stats, move_dirs.maybe(), glidings.maybe(), &mut positions, &mut velocities, &mut orientations, ) .join() { // Disable while dead TODO: Replace with client states? if stats.is_dead { continue; } // Move player according to move_dir if let Some(move_dir) = move_dir { vel.0 += Vec2::broadcast(dt.0) * move_dir.0 * match ( on_grounds.get(entity).is_some(), glidings.get(entity).is_some(), rollings.get(entity).is_some(), ) { (true, false, false) if vel.0.magnitude() < HUMANOID_SPEED => { HUMANOID_ACCEL } (false, true, false) if vel.0.magnitude() < GLIDE_SPEED => GLIDE_ACCEL, (false, false, false) if vel.0.magnitude() < HUMANOID_AIR_SPEED => { HUMANOID_AIR_ACCEL } (true, false, true) if vel.0.magnitude() < ROLL_SPEED => ROLL_ACCEL, _ => 0.0, }; } // Jump if jumpings.get(entity).is_some() { vel.0.z = HUMANOID_JUMP_ACCEL; jumpings.remove(entity); } // Glide if gliding.is_some() && vel.0.magnitude() < GLIDE_SPEED && vel.0.z < 0.0 { let lift = GLIDE_ANTIGRAV + vel.0.z.powf(2.0) * 0.2; vel.0.z += dt.0 * lift * Vec2::::from(vel.0 * 0.15).magnitude().min(1.0); } // Roll if let Some(time) = rollings.get_mut(entity).map(|r| &mut r.time) { *time += dt.0; if *time > 0.55 { rollings.remove(entity); } } // Set direction based on velocity if vel.0.magnitude_squared() != 0.0 { ori.0 = vel.0.normalized() * Vec3::new(1.0, 1.0, 0.0); } // Integrate forces // Friction is assumed to be a constant dependent on location let friction = 50.0 * if on_grounds.get(entity).is_some() { FRIC_GROUND } else { FRIC_AIR }; vel.0 = integrate_forces(dt.0, vel.0, friction); // Basic collision with terrain let player_rad = 0.3; // half-width of the player's AABB let player_height = 1.7; let dist = 2; // distance to probe the terrain for collisions let near_iter = (-dist..=dist) .map(move |i| (-dist..=dist).map(move |j| (-dist..=dist).map(move |k| (i, j, k)))) .flatten() .flatten(); // Function for determining whether the player at a specific position collides with the ground let collision_with = |pos: Vec3, near_iter| { for (i, j, k) in near_iter { let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k); if terrain .get(block_pos) .map(|vox| !vox.is_empty()) .unwrap_or(false) { let player_aabb = Aabb { min: pos + Vec3::new(-player_rad, -player_rad, 0.0), max: pos + Vec3::new(player_rad, player_rad, player_height), }; let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + 1.0, }; if player_aabb.collides_with_aabb(block_aabb) { return true; } } } false }; let was_on_ground = on_grounds.get(entity).is_some(); on_grounds.remove(entity); // Assume we're in the air - unless we can prove otherwise pos.0.z -= 0.0001; // To force collision with the floor let mut on_ground = false; let mut attempts = 0; // Don't loop infinitely here // Don't jump too far at once let increments = ((vel.0 * dt.0).map(|e| e.abs()).reduce_partial_max() / 0.3) .ceil() .max(1.0); for _ in 0..increments as usize { pos.0 += vel.0 * dt.0 / increments; // While the player is colliding with the terrain... while collision_with(pos.0, near_iter.clone()) && attempts < 32 { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-player_rad, -player_rad, 0.0), max: pos.0 + Vec3::new(player_rad, player_rad, player_height), }; // Determine the block that we are colliding with most (based on minimum collision axis) let (block_pos, block_aabb) = near_iter .clone() // Calculate the block's position in world space .map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k)) // Calculate the AABB of the block .map(|block_pos| { ( block_pos, Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + 1.0, }, ) }) // Determine whether the block's AABB collides with the player's AABB .filter(|(_, block_aabb)| block_aabb.collides_with_aabb(player_aabb)) // Make sure the block is actually solid .filter(|(block_pos, _)| { terrain .get(*block_pos) .map(|vox| !vox.is_empty()) .unwrap_or(false) }) // Find the maximum of the minimum collision axes (this bit is weird, trust me that it works) .max_by_key(|(_, block_aabb)| { ((player_aabb.collision_vector_with_aabb(*block_aabb) / vel.0) .map(|e| e.abs()) .reduce_partial_min() * 1000.0) as i32 }) .expect("Collision detected, but no colliding blocks found!"); // Find the intrusion vector of the collision let dir = player_aabb.collision_vector_with_aabb(block_aabb); // Determine an appropriate resolution vector (i.e: the minimum distance needed to push out of the block) let max_axis = dir.map(|e| e.abs()).reduce_partial_min(); let resolve_dir = -dir.map(|e| if e.abs() == max_axis { e } else { 0.0 }); // When the resolution direction is pointing upwards, we must be on the ground if resolve_dir.z > 0.0 && vel.0.z <= 0.0 { on_ground = true; } // When the resolution direction is non-vertical, we must be colliding with a wall // If the space above is free... if resolve_dir.z == 0.0 && !collision_with(pos.0 + Vec3::unit_z() * 1.1, near_iter.clone()) { // ...block-hop! pos.0.z = (pos.0.z + 1.0).ceil(); on_ground = true; break; } else { // Resolve the collision normally pos.0 += resolve_dir; vel.0 = vel .0 .map2(resolve_dir, |e, d| if d == 0.0 { e } else { 0.0 }); } attempts += 1; } } if on_ground { on_grounds.insert(entity, OnGround); // If we're not on the ground but the space below us is free, then "snap" to the ground } else if collision_with(pos.0 - Vec3::unit_z() * 1.0, near_iter.clone()) && vel.0.z < 0.0 && vel.0.z > -1.0 && was_on_ground { pos.0.z = (pos.0.z - 0.05).floor(); on_grounds.insert(entity, OnGround); } } } }