#![allow(dead_code)] mod econ; use crate::{ config::CONFIG, sim::WorldSim, site::{namegen::NameGen, Castle, Settlement, Site as WorldSite, Tree}, site2, util::{attempt, seed_expan, DHashMap, DHashSet, NEIGHBORS}, Index, Land, }; use common::{ astar::Astar, path::Path, spiral::Spiral2d, store::{Id, Store}, terrain::{uniform_idx_as_vec2, MapSizeLg, TerrainChunkSize, TERRAIN_CHUNK_BLOCKS_LG}, vol::RectVolSize, }; use core::{fmt, hash::BuildHasherDefault, ops::Range}; use fxhash::FxHasher64; use rand::prelude::*; use rand_chacha::ChaChaRng; use tracing::{debug, info, warn}; use vek::*; const fn initial_civ_count(map_size_lg: MapSizeLg) -> u32 { // NOTE: since map_size_lg's dimensions must fit in a u16, we can safely add // them here. // // NOTE: 48 at "default" scale of 10 × 10 chunk bits (1024 × 1024 chunks). (3 << (map_size_lg.vec().x + map_size_lg.vec().y)) >> 16 } pub struct CaveInfo { pub location: (Vec2, Vec2), pub name: String, } #[derive(Default)] pub struct Civs { pub civs: Store, pub places: Store, pub pois: Store, pub tracks: Store, /// We use this hasher (FxHasher64) because /// (1) we don't care about DDOS attacks (ruling out SipHash); /// (2) we care about determinism across computers (ruling out AAHash); /// (3) we have 8-byte keys (for which FxHash is fastest). pub track_map: DHashMap, DHashMap, Id>>, pub sites: Store, pub caves: Store, } // Change this to get rid of particularly horrid seeds const SEED_SKIP: u8 = 5; const POI_THINNING_DIST_SQRD: i32 = 300; pub struct GenCtx<'a, R: Rng> { sim: &'a mut WorldSim, rng: R, } impl<'a, R: Rng> GenCtx<'a, R> { pub fn reseed(&mut self) -> GenCtx<'_, impl Rng> { let mut entropy = self.rng.gen::<[u8; 32]>(); entropy[0] = entropy[0].wrapping_add(SEED_SKIP); // Skip bad seeds GenCtx { sim: self.sim, rng: ChaChaRng::from_seed(entropy), } } } impl Civs { pub fn generate(seed: u32, sim: &mut WorldSim, index: &mut Index) -> Self { let mut this = Self::default(); let rng = ChaChaRng::from_seed(seed_expan::rng_state(seed)); let initial_civ_count = initial_civ_count(sim.map_size_lg()); let mut ctx = GenCtx { sim, rng }; info!("starting peak naming"); this.name_peaks(&mut ctx); info!("starting biome naming"); this.name_biomes(&mut ctx); for _ in 0..ctx.sim.get_size().product() / 10_000 { this.generate_cave(&mut ctx); } let mut start_locations: Vec> = Vec::new(); for _ in 0..initial_civ_count { debug!("Creating civilisation..."); if this .birth_civ(&mut ctx.reseed(), &mut start_locations) .is_none() { warn!("Failed to find starting site for civilisation."); } } info!(?initial_civ_count, "all civilisations created"); let mut gnarling_enemies: Vec> = start_locations.clone(); let mut dungeon_enemies: Vec> = start_locations.clone(); let mut tree_enemies: Vec> = start_locations.clone(); let mut castle_enemies: Vec> = Vec::new(); for _ in 0..initial_civ_count * 3 { attempt(5, || { let (kind, size, avoid) = match ctx.rng.gen_range(0..64) { 0..=5 => (SiteKind::Castle, 3, (&castle_enemies, 20)), 28..=31 => { if index.features().site2_giant_trees { (SiteKind::GiantTree, 4, (&tree_enemies, 20)) } else { (SiteKind::Tree, 4, (&tree_enemies, 20)) } }, 32..=37 => (SiteKind::Gnarling, 5, (&gnarling_enemies, 20)), _ => (SiteKind::Dungeon, 0, (&dungeon_enemies, 20)), }; let loc = find_site_loc(&mut ctx, avoid, size, kind)?; match kind { SiteKind::Castle => { gnarling_enemies.push(loc); dungeon_enemies.push(loc); tree_enemies.push(loc); castle_enemies.push(loc); }, SiteKind::Gnarling => { castle_enemies.push(loc); dungeon_enemies.push(loc); gnarling_enemies.push(loc); }, SiteKind::Dungeon => { gnarling_enemies.push(loc); dungeon_enemies.push(loc); castle_enemies.push(loc); }, _ => (), } Some(this.establish_site(&mut ctx.reseed(), loc, |place| Site { kind, center: loc, place, site_tmp: None, })) }); } // Tick //=== old economy is gone // Flatten ground around sites for site in this.sites.values() { let wpos = site.center * TerrainChunkSize::RECT_SIZE.map(|e: u32| e as i32); let (radius, flatten_radius) = match &site.kind { SiteKind::Settlement => (32i32, 10.0), SiteKind::Dungeon => (8i32, 3.0), SiteKind::Castle => (16i32, 5.0), SiteKind::Refactor => (32i32, 10.0), SiteKind::Tree => (12i32, 8.0), SiteKind::GiantTree => (12i32, 8.0), SiteKind::Gnarling => (16i32, 10.0), }; let (raise, raise_dist, make_waypoint): (f32, i32, bool) = match &site.kind { SiteKind::Settlement => (10.0, 6, true), SiteKind::Castle => (0.0, 6, true), _ => (0.0, 0, false), }; // Flatten ground if let Some(center_alt) = ctx.sim.get_alt_approx(wpos) { for offs in Spiral2d::new().take(radius.pow(2) as usize) { let center_alt = center_alt + if offs.magnitude_squared() <= raise_dist.pow(2) { raise } else { 0.0 }; // Raise the town centre up a little let pos = site.center + offs; let factor = ((1.0 - (site.center - pos).map(|e| e as f32).magnitude() / flatten_radius) * 1.25) .min(1.0); let rng = &mut ctx.rng; ctx.sim .get_mut(pos) // Don't disrupt chunks that are near water .filter(|chunk| !chunk.river.near_water()) .map(|chunk| { let diff = Lerp::lerp_precise(chunk.alt, center_alt, factor) - chunk.alt; // Make sure we don't fall below sea level (fortunately, we don't have // to worry about the case where water_alt is already set to a correct // value higher than alt, since this chunk should have been filtered // out in that case). chunk.water_alt = CONFIG.sea_level.max(chunk.water_alt + diff); chunk.alt += diff; chunk.basement += diff; chunk.rockiness = 0.0; chunk.surface_veg *= 1.0 - factor * rng.gen_range(0.25..0.9); if make_waypoint && offs == Vec2::zero() { chunk.contains_waypoint = true; } }); } } } // Place sites in world let mut cnt = 0; for sim_site in this.sites.values_mut() { cnt += 1; let wpos = sim_site .center .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e * sz as i32 + sz as i32 / 2 }); let mut rng = ctx.reseed().rng; let site = index.sites.insert(match &sim_site.kind { SiteKind::Settlement => { WorldSite::settlement(Settlement::generate(wpos, Some(ctx.sim), &mut rng)) }, SiteKind::Dungeon => WorldSite::dungeon(site2::Site::generate_dungeon( &Land::from_sim(ctx.sim), &mut rng, wpos, )), SiteKind::Castle => { WorldSite::castle(Castle::generate(wpos, Some(ctx.sim), &mut rng)) }, SiteKind::Refactor => WorldSite::refactor(site2::Site::generate_city( &Land::from_sim(ctx.sim), &mut rng, wpos, )), SiteKind::Tree => { WorldSite::tree(Tree::generate(wpos, &Land::from_sim(ctx.sim), &mut rng)) }, SiteKind::GiantTree => WorldSite::giant_tree(site2::Site::generate_giant_tree( &Land::from_sim(ctx.sim), &mut rng, wpos, )), SiteKind::Gnarling => WorldSite::gnarling(site2::Site::generate_gnarling( &Land::from_sim(ctx.sim), &mut rng, wpos, )), }); sim_site.site_tmp = Some(site); let site_ref = &index.sites[site]; let radius_chunks = (site_ref.radius() / TerrainChunkSize::RECT_SIZE.x as f32).ceil() as usize; for pos in Spiral2d::new() .map(|offs| sim_site.center + offs) .take((radius_chunks * 2).pow(2)) { ctx.sim.get_mut(pos).map(|chunk| chunk.sites.push(site)); } debug!(?sim_site.center, "Placed site at location"); } info!(?cnt, "all sites placed"); //this.display_info(); // remember neighbor information in economy for (s1, val) in this.track_map.iter() { if let Some(index1) = this.sites.get(*s1).site_tmp { for (s2, t) in val.iter() { if let Some(index2) = this.sites.get(*s2).site_tmp { if index.sites.get(index1).do_economic_simulation() && index.sites.get(index2).do_economic_simulation() { let cost = this.tracks.get(*t).path.len(); index .sites .get_mut(index1) .economy .add_neighbor(index2, cost); index .sites .get_mut(index2) .economy .add_neighbor(index1, cost); } } } } } // collect natural resources let sites = &mut index.sites; (0..ctx.sim.map_size_lg().chunks_len()) .into_iter() .for_each(|posi| { let chpos = uniform_idx_as_vec2(ctx.sim.map_size_lg(), posi); let wpos = chpos.map(|e| e as i64) * TerrainChunkSize::RECT_SIZE.map(|e| e as i64); let closest_site = (*sites) .iter_mut() .filter(|s| !matches!(s.1.kind, crate::site::SiteKind::Dungeon(_))) .min_by_key(|(_id, s)| s.get_origin().map(|e| e as i64).distance_squared(wpos)); if let Some((_id, s)) = closest_site { let distance_squared = s.get_origin().map(|e| e as i64).distance_squared(wpos); s.economy .add_chunk(ctx.sim.get(chpos).unwrap(), distance_squared); } }); sites .iter_mut() .for_each(|(_, s)| s.economy.cache_economy()); this } // TODO: Move this fn generate_cave(&mut self, ctx: &mut GenCtx) { let mut pos = ctx .sim .get_size() .map(|sz| ctx.rng.gen_range(0..sz as i32) as f32); let mut vel = pos .map2(ctx.sim.get_size(), |pos, sz| sz as f32 / 2.0 - pos) .try_normalized() .unwrap_or_else(Vec2::unit_y); let path = (-100..100) .filter_map(|i: i32| { let depth = (i.abs() as f32 / 100.0 * std::f32::consts::PI / 2.0).cos(); vel = (vel + Vec2::new( ctx.rng.gen_range(-0.35..0.35), ctx.rng.gen_range(-0.35..0.35), )) .try_normalized() .unwrap_or_else(Vec2::unit_y); let old_pos = pos.map(|e| e as i32); pos = (pos + vel * 0.5) .clamped(Vec2::zero(), ctx.sim.get_size().map(|e| e as f32 - 1.0)); Some((pos.map(|e| e as i32), depth)).filter(|(pos, _)| *pos != old_pos) }) .collect::>(); for locs in path.windows(3) { let to_prev_idx = NEIGHBORS .iter() .enumerate() .find(|(_, dir)| **dir == locs[0].0 - locs[1].0) .expect("Track locations must be neighbors") .0; let to_next_idx = NEIGHBORS .iter() .enumerate() .find(|(_, dir)| **dir == locs[2].0 - locs[1].0) .expect("Track locations must be neighbors") .0; ctx.sim.get_mut(locs[0].0).unwrap().cave.0.neighbors |= 1 << ((to_prev_idx as u8 + 4) % 8); ctx.sim.get_mut(locs[1].0).unwrap().cave.0.neighbors |= (1 << (to_prev_idx as u8)) | (1 << (to_next_idx as u8)); ctx.sim.get_mut(locs[2].0).unwrap().cave.0.neighbors |= 1 << ((to_next_idx as u8 + 4) % 8); } for loc in path.iter() { let mut chunk = ctx.sim.get_mut(loc.0).unwrap(); let depth = loc.1 * 250.0 - 20.0; chunk.cave.1.alt = chunk.alt - depth + ctx.rng.gen_range(-4.0..4.0) * (depth > 10.0) as i32 as f32; chunk.cave.1.width = ctx.rng.gen_range(6.0..32.0); chunk.cave.0.offset = Vec2::new(ctx.rng.gen_range(-16..17), ctx.rng.gen_range(-16..17)); if chunk.cave.1.alt + chunk.cave.1.width + 5.0 > chunk.alt { chunk.spawn_rate = 0.0; } } self.caves.insert(CaveInfo { location: ( path.first().unwrap().0 * TerrainChunkSize::RECT_SIZE.map(|e: u32| e as i32), path.last().unwrap().0 * TerrainChunkSize::RECT_SIZE.map(|e: u32| e as i32), ), name: { let name = NameGen::location(&mut ctx.rng).generate(); match ctx.rng.gen_range(0..7) { 0 => format!("{} Hole", name), 1 => format!("{} Cavern", name), 2 => format!("{} Hollow", name), 3 => format!("{} Tunnel", name), 4 => format!("{} Mouth", name), 5 => format!("{} Grotto", name), _ => format!("{} Den", name), } }, }); } pub fn place(&self, id: Id) -> &Place { self.places.get(id) } pub fn sites(&self) -> impl Iterator + '_ { self.sites.values() } #[allow(dead_code)] fn display_info(&self) { for (id, civ) in self.civs.iter() { println!("# Civilisation {:?}", id); println!("Name: "); println!("Homeland: {:#?}", self.places.get(civ.homeland)); } for (id, site) in self.sites.iter() { println!("# Site {:?}", id); println!("{:#?}", site); } } /// Return the direct track between two places pub fn track_between(&self, a: Id, b: Id) -> Option> { self.track_map .get(&a) .and_then(|dests| dests.get(&b)) .or_else(|| self.track_map.get(&b).and_then(|dests| dests.get(&a))) .copied() } /// Return an iterator over a site's neighbors pub fn neighbors(&self, site: Id) -> impl Iterator> + '_ { let to = self .track_map .get(&site) .map(|dests| dests.keys()) .into_iter() .flatten(); let fro = self .track_map .iter() .filter(move |(_, dests)| dests.contains_key(&site)) .map(|(p, _)| p); to.chain(fro).filter(move |p| **p != site).copied() } /// Find the cheapest route between two places fn route_between(&self, a: Id, b: Id) -> Option<(Path>, f32)> { let heuristic = move |p: &Id| { (self .sites .get(*p) .center .distance_squared(self.sites.get(b).center) as f32) .sqrt() }; let neighbors = |p: &Id| self.neighbors(*p); let transition = |a: &Id, b: &Id| self.tracks.get(self.track_between(*a, *b).unwrap()).cost; let satisfied = |p: &Id| *p == b; // We use this hasher (FxHasher64) because // (1) we don't care about DDOS attacks (ruling out SipHash); // (2) we care about determinism across computers (ruling out AAHash); // (3) we have 8-byte keys (for which FxHash is fastest). let mut astar = Astar::new( 100, a, heuristic, BuildHasherDefault::::default(), ); astar .poll(100, heuristic, neighbors, transition, satisfied) .into_path() .and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost))) } fn birth_civ( &mut self, ctx: &mut GenCtx, start_locations: &mut Vec>, ) -> Option> { let kind = SiteKind::Refactor; let site = attempt(100, || { let loc = find_site_loc(ctx, (start_locations, 60), 1, kind)?; start_locations.push(loc); Some(self.establish_site(ctx, loc, |place| Site { kind, site_tmp: None, center: loc, place, /* most economic members have moved to site/Economy */ /* last_exports: Stocks::from_default(0.0), * export_targets: Stocks::from_default(0.0), * //trade_states: Stocks::default(), */ })) })?; let civ = self.civs.insert(Civ { capital: site, homeland: self.sites.get(site).place, }); Some(civ) } fn establish_place( &mut self, _ctx: &mut GenCtx, loc: Vec2, _area: Range, ) -> Id { self.places.insert(Place { center: loc }) } /// Adds lake POIs and names them fn name_biomes(&mut self, ctx: &mut GenCtx) { let map_size_lg = ctx.sim.map_size_lg(); let mut biomes: Vec<(common::terrain::BiomeKind, Vec)> = Vec::new(); let mut explored = DHashSet::default(); let mut to_explore = DHashSet::default(); let mut to_floodfill = DHashSet::default(); // TODO: have start point in center and ignore ocean? let start_point = 0; to_explore.insert(start_point); explored.insert(start_point); while !to_explore.is_empty() { let exploring = *to_explore.iter().next().unwrap(); to_explore.remove(&exploring); to_floodfill.insert(exploring); // Should always be a chunk on the map let biome = ctx.sim.chunks[exploring].get_biome(); biomes.push((biome, Vec::new())); while !to_floodfill.is_empty() { let filling = *to_floodfill.iter().next().unwrap(); to_explore.remove(&filling); to_floodfill.remove(&filling); explored.insert(filling); biomes.last_mut().unwrap().1.push(filling); for neighbour in common::terrain::neighbors(map_size_lg, filling) { if explored.contains(&neighbour) { continue; } let n_biome = ctx.sim.chunks[neighbour].get_biome(); if n_biome == biome { to_floodfill.insert(neighbour); } else { to_explore.insert(neighbour); } } } } let mut biome_count = 0; for biome in biomes { let name = match biome.0 { common::terrain::BiomeKind::Lake if biome.1.len() as u32 > 200 => Some(format!( "{} {}", ["Lake", "Loch"].choose(&mut ctx.rng).unwrap(), NameGen::location(&mut ctx.rng).generate_lake_custom() )), common::terrain::BiomeKind::Lake if biome.1.len() as u32 > 10 => Some(format!( "{} {}", NameGen::location(&mut ctx.rng).generate_lake_custom(), ["Pool", "Well", "Pond"].choose(&mut ctx.rng).unwrap() )), common::terrain::BiomeKind::Grassland if biome.1.len() as u32 > 750 => { Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_grassland_engl(), NameGen::location(&mut ctx.rng).generate_grassland_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Grasslands", "Plains", "Meadows", "Fields", "Heath", "Hills", "Prairie", "Lowlands", "Steppe", "Downs", "Greens", ] .choose(&mut ctx.rng) .unwrap() )) }, common::terrain::BiomeKind::Ocean if biome.1.len() as u32 > 750 => Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_ocean_engl(), NameGen::location(&mut ctx.rng).generate_ocean_custom() ] .choose(&mut ctx.rng) .unwrap(), ["Sea", "Bay", "Gulf", "Deep", "Depths", "Ocean", "Blue",] .choose(&mut ctx.rng) .unwrap() )), common::terrain::BiomeKind::Mountain if biome.1.len() as u32 > 750 => { Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_mountain_engl(), NameGen::location(&mut ctx.rng).generate_mountain_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Mountains", "Range", "Reach", "Massif", "Rocks", "Cliffs", "Peaks", "Heights", "Bluffs", "Ridge", "Canyon", "Plateau", ] .choose(&mut ctx.rng) .unwrap() )) }, common::terrain::BiomeKind::Snowland if biome.1.len() as u32 > 750 => { Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_snowland_engl(), NameGen::location(&mut ctx.rng).generate_snowland_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Snowlands", "Glacier", "Tundra", "Drifts", "Snowfields", "Hills", "Downs", "Uplands", "Highlands", ] .choose(&mut ctx.rng) .unwrap() )) }, common::terrain::BiomeKind::Desert if biome.1.len() as u32 > 750 => Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_desert_engl(), NameGen::location(&mut ctx.rng).generate_desert_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Desert", "Sands", "Sandsea", "Drifts", "Dunes", "Droughts", "Flats", ] .choose(&mut ctx.rng) .unwrap() )), common::terrain::BiomeKind::Swamp if biome.1.len() as u32 > 200 => Some(format!( "{} {}", NameGen::location(&mut ctx.rng).generate_swamp_engl(), [ "Swamp", "Swamps", "Swamplands", "Marsh", "Marshlands", "Morass", "Mire", "Bog", "Wetlands", "Fen", "Moors", ] .choose(&mut ctx.rng) .unwrap() )), common::terrain::BiomeKind::Jungle if biome.1.len() as u32 > 85 => Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_jungle_engl(), NameGen::location(&mut ctx.rng).generate_jungle_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Jungle", "Rainforest", "Greatwood", "Wilds", "Wildwood", "Tangle", "Tanglewood", "Bush", ] .choose(&mut ctx.rng) .unwrap() )), common::terrain::BiomeKind::Forest if biome.1.len() as u32 > 750 => Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_forest_engl(), NameGen::location(&mut ctx.rng).generate_forest_custom() ] .choose(&mut ctx.rng) .unwrap(), ["Forest", "Woodlands", "Woods", "Glades", "Grove", "Weald",] .choose(&mut ctx.rng) .unwrap() )), common::terrain::BiomeKind::Savannah if biome.1.len() as u32 > 750 => { Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_savannah_engl(), NameGen::location(&mut ctx.rng).generate_savannah_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Savannah", "Shrublands", "Sierra", "Prairie", "Lowlands", "Flats", ] .choose(&mut ctx.rng) .unwrap() )) }, common::terrain::BiomeKind::Taiga if biome.1.len() as u32 > 750 => Some(format!( "{} {}", [ NameGen::location(&mut ctx.rng).generate_taiga_engl(), NameGen::location(&mut ctx.rng).generate_taiga_custom() ] .choose(&mut ctx.rng) .unwrap(), [ "Forest", "Woodlands", "Woods", "Timberlands", "Highlands", "Uplands", ] .choose(&mut ctx.rng) .unwrap() )), _ => None, }; if let Some(name) = name { // find average center of the biome let center = biome .1 .iter() .map(|b| uniform_idx_as_vec2(map_size_lg, *b)) .sum::>() / biome.1.len() as i32; // Select the point closest to the center let idx = *biome .1 .iter() .min_by_key(|&b| center.distance_squared(uniform_idx_as_vec2(map_size_lg, *b))) .unwrap(); let id = self.pois.insert(PointOfInterest { name, loc: uniform_idx_as_vec2(map_size_lg, idx), kind: PoiKind::Biome(biome.1.len() as u32), }); for chunk in biome.1 { ctx.sim.chunks[chunk].poi = Some(id); } biome_count += 1; } } info!(?biome_count, "all biomes named"); } /// Adds mountain POIs and name them fn name_peaks(&mut self, ctx: &mut GenCtx) { let map_size_lg = ctx.sim.map_size_lg(); const MIN_MOUNTAIN_ALT: f32 = 600.0; const MIN_MOUNTAIN_CHAOS: f32 = 0.35; let rng = &mut ctx.rng; let sim_chunks = &ctx.sim.chunks; let peaks = sim_chunks .iter() .enumerate() .filter(|(posi, chunk)| { let neighbor_alts_max = common::terrain::neighbors(map_size_lg, *posi) .map(|i| sim_chunks[i].alt as u32) .max(); chunk.alt > MIN_MOUNTAIN_ALT && chunk.chaos > MIN_MOUNTAIN_CHAOS && neighbor_alts_max.map_or(false, |n_alt| chunk.alt as u32 > n_alt) }) .map(|(posi, chunk)| { ( posi, uniform_idx_as_vec2(map_size_lg, posi), (chunk.alt - CONFIG.sea_level) as u32, ) }) .collect::, u32)>>(); let mut num_peaks = 0; let mut removals = vec![false; peaks.len()]; for (i, peak) in peaks.iter().enumerate() { for (k, n_peak) in peaks.iter().enumerate() { // If the difference in position of this peak and another is // below a threshold and this peak's altitude is lower, remove the // peak from the list if i != k && (peak.1).distance_squared(n_peak.1) < POI_THINNING_DIST_SQRD && peak.2 <= n_peak.2 { // Remove this peak // This cannot panic as `removals` is the same length as `peaks` // i is the index in `peaks` removals[i] = true; } } } peaks .iter() .enumerate() .filter(|&(i, _)| !removals[i]) .for_each(|(_, (_, loc, alt))| { num_peaks += 1; self.pois.insert(PointOfInterest { name: { let name = NameGen::location(rng).generate(); if *alt < 1000 { match rng.gen_range(0..6) { 0 => format!("{} Bluff", name), 1 => format!("{} Crag", name), _ => format!("{} Hill", name), } } else { match rng.gen_range(0..8) { 0 => format!("{}'s Peak", name), 1 => format!("{} Peak", name), 2 => format!("{} Summit", name), _ => format!("Mount {}", name), } } }, kind: PoiKind::Peak(*alt), loc: *loc, }); }); info!(?num_peaks, "all peaks named"); } fn establish_site( &mut self, ctx: &mut GenCtx, loc: Vec2, site_fn: impl FnOnce(Id) -> Site, ) -> Id { const SITE_AREA: Range = 1..4; //64..256; let place = match ctx.sim.get(loc).and_then(|site| site.place) { Some(place) => place, None => self.establish_place(ctx, loc, SITE_AREA), }; let site = self.sites.insert(site_fn(place)); // Find neighbors const MAX_NEIGHBOR_DISTANCE: f32 = 2000.0; let mut nearby = self .sites .iter() .filter(|(_, p)| { matches!( p.kind, SiteKind::Refactor | SiteKind::Settlement | SiteKind::Castle ) }) .map(|(id, p)| (id, (p.center.distance_squared(loc) as f32).sqrt())) .filter(|(_, dist)| *dist < MAX_NEIGHBOR_DISTANCE) .collect::>(); nearby.sort_by_key(|(_, dist)| *dist as i32); if let SiteKind::Refactor | SiteKind::Settlement | SiteKind::Castle = self.sites[site].kind { for (nearby, _) in nearby.into_iter().take(5) { // Find a novel path if let Some((path, cost)) = find_path(ctx, loc, self.sites.get(nearby).center) { // Find a path using existing paths if self .route_between(site, nearby) // If the novel path isn't efficient compared to existing routes, don't use it .filter(|(_, route_cost)| *route_cost < cost * 3.0) .is_none() { // Write the track to the world as a path for locs in path.nodes().windows(3) { let to_prev_idx = NEIGHBORS .iter() .enumerate() .find(|(_, dir)| **dir == locs[0] - locs[1]) .expect("Track locations must be neighbors") .0; let to_next_idx = NEIGHBORS .iter() .enumerate() .find(|(_, dir)| **dir == locs[2] - locs[1]) .expect("Track locations must be neighbors") .0; ctx.sim.get_mut(locs[0]).unwrap().path.0.neighbors |= 1 << ((to_prev_idx as u8 + 4) % 8); ctx.sim.get_mut(locs[2]).unwrap().path.0.neighbors |= 1 << ((to_next_idx as u8 + 4) % 8); let mut chunk = ctx.sim.get_mut(locs[1]).unwrap(); chunk.path.0.neighbors |= (1 << (to_prev_idx as u8)) | (1 << (to_next_idx as u8)); chunk.path.0.offset = Vec2::new(ctx.rng.gen_range(-16..17), ctx.rng.gen_range(-16..17)); } // Take note of the track let track = self.tracks.insert(Track { cost, path }); self.track_map .entry(site) .or_default() .insert(nearby, track); } } } } site } } /// Attempt to find a path between two locations fn find_path( ctx: &mut GenCtx, a: Vec2, b: Vec2, ) -> Option<(Path>, f32)> { const MAX_PATH_ITERS: usize = 100_000; let sim = &ctx.sim; let heuristic = move |l: &Vec2| (l.distance_squared(b) as f32).sqrt(); let neighbors = |l: &Vec2| { let l = *l; NEIGHBORS .iter() .filter(move |dir| walk_in_dir(sim, l, **dir).is_some()) .map(move |dir| l + *dir) }; let transition = |a: &Vec2, b: &Vec2| 1.0 + walk_in_dir(sim, *a, *b - *a).unwrap_or(10000.0); let satisfied = |l: &Vec2| *l == b; // We use this hasher (FxHasher64) because // (1) we don't care about DDOS attacks (ruling out SipHash); // (2) we care about determinism across computers (ruling out AAHash); // (3) we have 8-byte keys (for which FxHash is fastest). let mut astar = Astar::new( MAX_PATH_ITERS, a, heuristic, BuildHasherDefault::::default(), ); astar .poll(MAX_PATH_ITERS, heuristic, neighbors, transition, satisfied) .into_path() .and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost))) } /// Return Some if travel between a location and a chunk next to it is permitted /// If permitted, the approximate relative const of traversal is given // (TODO: by whom?) fn walk_in_dir(sim: &WorldSim, a: Vec2, dir: Vec2) -> Option { if loc_suitable_for_walking(sim, a) && loc_suitable_for_walking(sim, a + dir) { let a_chunk = sim.get(a)?; let b_chunk = sim.get(a + dir)?; let hill_cost = ((b_chunk.alt - a_chunk.alt).abs() / 5.0).powi(2); let water_cost = if b_chunk.river.near_water() { 50.0 } else { 0.0 } + (b_chunk.water_alt - b_chunk.alt + 8.0).clamped(0.0, 8.0) * 3.0; // Try not to path swamps / tidal areas let wild_cost = if b_chunk.path.0.is_way() { 0.0 // Traversing existing paths has no additional cost! } else { 3.0 // + (1.0 - b_chunk.tree_density) * 20.0 // Prefer going through forests, for aesthetics }; Some(1.0 + hill_cost + water_cost + wild_cost) } else { None } } /// Return true if a position is suitable for walking on fn loc_suitable_for_walking(sim: &WorldSim, loc: Vec2) -> bool { if let Some(chunk) = sim.get(loc) { !chunk.river.is_ocean() && !chunk.river.is_lake() && !chunk.near_cliffs() } else { false } } /// Return true if a site could be constructed between a location and a chunk /// next to it is permitted (TODO: by whom?) fn site_in_dir(sim: &WorldSim, a: Vec2, dir: Vec2, site_kind: SiteKind) -> bool { loc_suitable_for_site(sim, a, site_kind) && loc_suitable_for_site(sim, a + dir, site_kind) } /// Return true if a position is suitable for site construction (TODO: /// criteria?) fn loc_suitable_for_site(sim: &WorldSim, loc: Vec2, site_kind: SiteKind) -> bool { fn check_chunk_occupation(sim: &WorldSim, loc: Vec2, radius: i32) -> bool { for x in (-radius)..radius { for y in (-radius)..radius { let check_loc = loc + Vec2::new(x, y).map2(TerrainChunkSize::RECT_SIZE, |e, sz| e * sz as i32); if sim.get(check_loc).map_or(false, |c| !c.sites.is_empty()) { return false; } } } true } let possible_terrain = if let Some(chunk) = sim.get(loc) { !chunk.river.is_ocean() && !chunk.river.is_lake() && !chunk.river.is_river() && !chunk.is_underwater() && !matches!( chunk.get_biome(), common::terrain::BiomeKind::Lake | common::terrain::BiomeKind::Ocean ) && sim .get_gradient_approx(loc) .map(|grad| grad < 1.0) .unwrap_or(false) } else { false }; let not_occupied = check_chunk_occupation(sim, loc, site_kind.exclusion_radius()); possible_terrain && site_kind.is_suitable_loc(loc, sim) && not_occupied } /// Attempt to search for a location that's suitable for site construction fn find_site_loc( ctx: &mut GenCtx, avoid: (&Vec>, i32), size: i32, site_kind: SiteKind, ) -> Option> { const MAX_ATTEMPTS: usize = 10000; let mut loc = None; let (avoid_locs, distance) = avoid; for _ in 0..MAX_ATTEMPTS { let test_loc = loc.unwrap_or_else(|| { Vec2::new( ctx.rng.gen_range(0..ctx.sim.get_size().x as i32), ctx.rng.gen_range(0..ctx.sim.get_size().y as i32), ) }); if avoid_locs .iter() .any(|l| l.distance_squared(test_loc) < distance * distance) { continue; } for offset in Spiral2d::new().take((size * 2 + 1).pow(2) as usize) { if loc_suitable_for_site(ctx.sim, test_loc + offset, site_kind) { return Some(test_loc); } } loc = ctx.sim.get(test_loc).and_then(|c| { site_kind.is_suitable_loc(test_loc, ctx.sim).then_some( c.downhill? .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / (sz as i32)), ) }); } warn!("Failed to place site {:?}.", site_kind); None } #[derive(Debug)] pub struct Civ { capital: Id, homeland: Id, } #[derive(Debug)] pub struct Place { pub center: Vec2, /* act sort of like territory with sites belonging to it * nat_res/NaturalResources was moved to Economy * nat_res: NaturalResources, */ } pub struct Track { /// Cost of using this track relative to other paths. This cost is an /// arbitrary unit and doesn't make sense unless compared to other track /// costs. cost: f32, path: Path>, } impl Track { pub fn path(&self) -> &Path> { &self.path } } #[derive(Debug)] pub struct Site { pub kind: SiteKind, // TODO: Remove this field when overhauling pub site_tmp: Option>, pub center: Vec2, pub place: Id, } impl fmt::Display for Site { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { writeln!(f, "{:?}", self.kind)?; Ok(()) } } #[derive(Debug, Clone, Copy, PartialEq)] pub enum SiteKind { Settlement, Dungeon, Castle, Refactor, Tree, GiantTree, Gnarling, } impl SiteKind { pub fn is_suitable_loc(&self, loc: Vec2, sim: &WorldSim) -> bool { sim.get(loc).map_or(false, |chunk| match self { SiteKind::Gnarling => (-0.3..0.4).contains(&chunk.temp) && chunk.tree_density > 0.75, SiteKind::GiantTree | SiteKind::Tree => chunk.tree_density > 0.4, SiteKind::Castle => { if chunk.tree_density > 0.4 || chunk.river.near_water() || chunk.near_cliffs() { return false; } const HILL_RADIUS: i32 = 3 * TERRAIN_CHUNK_BLOCKS_LG as i32; for x in (-HILL_RADIUS)..HILL_RADIUS { for y in (-HILL_RADIUS)..HILL_RADIUS { let check_loc = loc + Vec2::new(x, y); if let Some(true) = sim .get_alt_approx(check_loc) .map(|surrounding_alt| surrounding_alt > chunk.alt + 1.0) { return false; } // Castles are really big, so to avoid parts of them ending up underwater or // in other awkward positions we have to do this if sim .get(check_loc) .map_or(true, |c| c.is_underwater() || c.near_cliffs()) { return false; } } } true }, SiteKind::Refactor | SiteKind::Settlement => { const RESOURCE_RADIUS: i32 = 1; let mut river_chunks = 0; let mut lake_chunks = 0; let mut ocean_chunks = 0; let mut rock_chunks = 0; let mut tree_chunks = 0; let mut farmable_chunks = 0; let mut farmable_needs_irrigation_chunks = 0; let mut land_chunks = 0; for x in (-RESOURCE_RADIUS)..RESOURCE_RADIUS { for y in (-RESOURCE_RADIUS)..RESOURCE_RADIUS { let check_loc = loc + Vec2::new(x, y) .map2(TerrainChunkSize::RECT_SIZE, |e, sz| e * sz as i32); sim.get(check_loc).map(|c| { if num::abs(chunk.alt - c.alt) < 200.0 { if c.river.is_river() { river_chunks += 1; } if c.river.is_lake() { lake_chunks += 1; } if c.river.is_ocean() { ocean_chunks += 1; } if c.tree_density > 0.7 { tree_chunks += 1; } if c.rockiness < 0.3 && c.temp > CONFIG.snow_temp { if c.surface_veg > 0.5 { farmable_chunks += 1; } else { match c.get_biome() { common::terrain::BiomeKind::Savannah => { farmable_needs_irrigation_chunks += 1 }, common::terrain::BiomeKind::Desert => { farmable_needs_irrigation_chunks += 1 }, _ => (), } } } if !c.river.is_river() && !c.river.is_lake() && !c.river.is_ocean() { land_chunks += 1; } } // Mining is different since presumably you dig into the hillside if c.rockiness > 0.7 && c.alt - chunk.alt > -10.0 { rock_chunks += 1; } }); } } let has_river = river_chunks > 1; let has_lake = lake_chunks > 1; let vegetation_implies_potable_water = chunk.tree_density > 0.4 && !matches!(chunk.get_biome(), common::terrain::BiomeKind::Swamp); let warm_or_firewood = chunk.temp > CONFIG.snow_temp || tree_chunks > 2; let has_potable_water = { has_river || (has_lake && chunk.alt > 100.0) || vegetation_implies_potable_water }; let has_building_materials = tree_chunks > 0 || rock_chunks > 0 || chunk.temp > CONFIG.tropical_temp && (has_river || has_lake); let water_rich = lake_chunks + river_chunks > 2; let can_grow_rice = water_rich && chunk.humidity + 1.0 > CONFIG.jungle_hum && chunk.temp + 1.0 > CONFIG.tropical_temp; let farming_score = if can_grow_rice { farmable_chunks * 2 } else { farmable_chunks } + if water_rich { farmable_needs_irrigation_chunks } else { 0 }; let fish_score = lake_chunks + ocean_chunks; let food_score = farming_score + fish_score; let mining_score = if tree_chunks > 1 { rock_chunks } else { 0 }; let forestry_score = if has_river { tree_chunks } else { 0 }; let trading_score = std::cmp::min(std::cmp::min(land_chunks, ocean_chunks), river_chunks); let industry_score = 3.0 * (food_score as f32 + 1.0).log2() + 2.0 * (forestry_score as f32 + 1.0).log2() + (mining_score as f32 + 1.0).log2() + (trading_score as f32 + 1.0).log2(); has_potable_water && has_building_materials && industry_score > 6.0 && warm_or_firewood }, _ => true, }) } } impl SiteKind { pub fn exclusion_radius(&self) -> i32 { // FIXME: Provide specific values for each individual SiteKind match self { SiteKind::Dungeon => 4, _ => 8, // This is just an arbitrary value } } } impl Site { pub fn is_dungeon(&self) -> bool { matches!(self.kind, SiteKind::Dungeon) } pub fn is_settlement(&self) -> bool { matches!(self.kind, SiteKind::Settlement) } pub fn is_castle(&self) -> bool { matches!(self.kind, SiteKind::Castle) } } #[derive(PartialEq, Debug, Clone)] pub struct PointOfInterest { pub name: String, pub kind: PoiKind, pub loc: Vec2, } #[derive(PartialEq, Debug, Clone)] pub enum PoiKind { /// Peak stores the altitude Peak(u32), /// Lake stores a metric relating to size Biome(u32), }