use client::Client; use common::vol::{ReadVol, SampleVol}; // Standard use std::f32::consts::PI; // Library use vek::*; const NEAR_PLANE: f32 = 0.1; const FAR_PLANE: f32 = 10000.0; const INTERP_TIME: f32 = 0.1; pub struct Camera { tgt_focus: Vec3, focus: Vec3, ori: Vec3, tgt_dist: f32, dist: f32, fov: f32, aspect: f32, last_time: Option, } impl Camera { /// Create a new `Camera` with default parameters. pub fn new(aspect: f32) -> Self { Self { tgt_focus: Vec3::unit_z() * 10.0, focus: Vec3::unit_z() * 10.0, ori: Vec3::zero(), tgt_dist: 10.0, dist: 10.0, fov: 1.3, aspect, last_time: None, } } /// Compute the transformation matrices (view matrix and projection matrix) and position of the /// camera. pub fn compute_dependents(&self, client: &Client) -> (Mat4, Mat4, Vec3) { let dist = { let (start, end) = ( self.focus, self.focus + (Vec3::new( -f32::sin(self.ori.x) * f32::cos(self.ori.y), -f32::cos(self.ori.x) * f32::cos(self.ori.y), f32::sin(self.ori.y), ) * self.dist), ); match client .state() .terrain() .ray(start, end) .ignore_error() .max_iter(500) .cast() { (d, Ok(Some(_))) => f32::min(d - 1.0, self.dist), (_, Ok(None)) => self.dist, (_, Err(_)) => self.dist, } .max(0.0) }; let view_mat = Mat4::::identity() * Mat4::translation_3d(-Vec3::unit_z() * dist) * Mat4::rotation_z(self.ori.z) * Mat4::rotation_x(self.ori.y) * Mat4::rotation_y(self.ori.x) * Mat4::rotation_3d(PI / 2.0, -Vec4::unit_x()) * Mat4::translation_3d(-self.focus); let proj_mat = Mat4::perspective_rh_no(self.fov, self.aspect, NEAR_PLANE, FAR_PLANE); // TODO: Make this more efficient. let cam_pos = Vec3::from(view_mat.inverted() * Vec4::unit_w()); (view_mat, proj_mat, cam_pos) } /// Rotate the camera about its focus by the given delta, limiting the input accordingly. pub fn rotate_by(&mut self, delta: Vec3) { // Wrap camera yaw self.ori.x = (self.ori.x + delta.x) % (2.0 * PI); // Clamp camera pitch to the vertical limits self.ori.y = (self.ori.y + delta.y).min(PI / 2.0).max(-PI / 2.0); // Wrap camera roll self.ori.z = (self.ori.z + delta.z) % (2.0 * PI); } /// Set the orientation of the camera about its focus. pub fn set_orientation(&mut self, orientation: Vec3) { // Wrap camera yaw self.ori.x = orientation.x % (2.0 * PI); // Clamp camera pitch to the vertical limits self.ori.y = orientation.y.min(PI / 2.0).max(-PI / 2.0); // Wrap camera roll self.ori.z = orientation.z % (2.0 * PI); } /// Zoom the camera by the given delta, limiting the input accordingly. pub fn zoom_by(&mut self, delta: f32) { // Clamp camera dist to the 0 <= x <= infinity range self.tgt_dist = (self.tgt_dist + delta).max(0.0); } /// Set the distance of the camera from the target (i.e., zoom). pub fn set_distance(&mut self, dist: f32) { self.tgt_dist = dist; } pub fn update(&mut self, time: f64) { // This is horribly frame time dependent, but so is most of the game let delta = self.last_time.replace(time).map_or(0.0, |t| time - t); if (self.dist - self.tgt_dist).abs() > 0.01 { self.dist = f32::lerp(self.dist, self.tgt_dist, (delta as f32) / INTERP_TIME); } if (self.focus - self.tgt_focus).magnitude() > 0.01 { self.focus = Vec3::lerp(self.focus, self.tgt_focus, (delta as f32) / INTERP_TIME); } } /// Get the focus position of the camera. pub fn get_focus_pos(&self) -> Vec3 { self.tgt_focus } /// Set the focus position of the camera. pub fn set_focus_pos(&mut self, focus: Vec3) { self.tgt_focus = focus; } /// Get the aspect ratio of the camera. pub fn get_aspect_ratio(&self) -> f32 { self.aspect } /// Set the aspect ratio of the camera. pub fn set_aspect_ratio(&mut self, aspect: f32) { self.aspect = if aspect.is_normal() { aspect } else { 1.0 }; } /// Get the orientation of the camera. pub fn get_orientation(&self) -> Vec3 { self.ori } }