#ifndef SHADOWS_GLSL #define SHADOWS_GLSL #ifdef HAS_SHADOW_MAPS #if (SHADOW_MODE == SHADOW_MODE_MAP) struct ShadowLocals { mat4 shadowMatrices; mat4 texture_mat; }; layout (std140, set = 0, binding = 9) uniform u_light_shadows { ShadowLocals shadowMats[/*MAX_LAYER_FACES*//*192*/126]; }; // Use with sampler2DShadow layout(set = 0, binding = 12) uniform texture2D t_directed_shadow_maps; layout(set = 0, binding = 13) uniform sampler s_directed_shadow_maps; // uniform sampler2DArrayShadow t_directed_shadow_maps; // uniform samplerCubeArrayShadow t_shadow_maps; // uniform samplerCubeArray t_shadow_maps; // Use with samplerCubeShadow layout(set = 0, binding = 10) uniform textureCube t_point_shadow_maps; layout(set = 0, binding = 11) uniform sampler s_point_shadow_maps; // uniform samplerCube t_shadow_maps; // uniform sampler2DArray t_directed_shadow_maps; float VectorToDepth (vec3 Vec) { // return length(Vec) / screen_res.w; vec3 AbsVec = abs(Vec); float LocalZcomp = max(AbsVec.x, max(AbsVec.y, AbsVec.z)); // float LocalZcomp = length(Vec); // Replace f and n with the far and near plane values you used when // you drew your cube map. // const float f = 2048.0; // const float n = 1.0; // float NormZComp = (screen_res.w+screen_res.z) / (screen_res.w-screen_res.z) - (2*screen_res.w*screen_res.z)/(screen_res.w-screen_res.z)/LocalZcomp; // float NormZComp = 1.0 - shadow_proj_factors.y / shadow_proj_factors.x / LocalZcomp; float NormZComp = shadow_proj_factors.x - shadow_proj_factors.y / LocalZcomp; // NormZComp = -1000.0 / (NormZComp + 10000.0); return (NormZComp + 1.0) * 0.5; // float NormZComp = length(LocalZcomp); // NormZComp = -NormZComp / screen_res.w; // // return (NormZComp + 1.0) * 0.5; // return NormZComp; } const vec3 sampleOffsetDirections[20] = vec3[] ( vec3( 1, 1, 1), vec3( 1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1), vec3( 1, 1, -1), vec3( 1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1), vec3( 1, 1, 0), vec3( 1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0), vec3( 1, 0, 1), vec3(-1, 0, 1), vec3( 1, 0, -1), vec3(-1, 0, -1), vec3( 0, 1, 1), vec3( 0, -1, 1), vec3( 0, -1, -1), vec3( 0, 1, -1) // vec3(0, 0, 0) ); float ShadowCalculationPoint(uint lightIndex, vec3 fragToLight, vec3 fragNorm, /*float currentDepth*/vec3 fragPos) { if (lightIndex != 0u) { return 1.0; }; { float currentDepth = VectorToDepth(fragToLight);// + bias; float visibility = texture(samplerCubeShadow(t_point_shadow_maps, s_point_shadow_maps), vec4(fragToLight, currentDepth));// / (screen_res.w/* - screen_res.z*/)/*1.0 -bias*//*-(currentDepth - bias) / screen_res.w*//*-screen_res.w*/); /* if (visibility == 1.0 || visibility == 0.0) { return visibility; } */ /* if (visibility >= 0.75) { return 1.0; } if (visibility <= 0.25) { return 0.0; } */ /* if (visibility < 1.0) { return 0.0; } */ // return visibility; /* if (visibility == 1.0) { return visibility; } */ return visibility; // return visibility == 1.0 ? 1.0 : 0.0; } // float shadow = 0.0; // float bias = 0.0;//0.003;//-0.003;//-0.005;//0.001;//-1.0;//-0.001;//0.001;//0.003;//-0.05;//-0.1;//0.0;//0.1 // float viewDistance = length(cam_pos.xyz - fragPos); // vec3 firstDelta = vec3(0.0);///*min(viewDistance, 5.0) * *//**normalize(cam_pos - fragPos)*/fragNorm * 0.5; // fragToLight += firstDelta; // // viewDistance -= length(firstDelta); // fragPos -= firstDelta; // int samples = 20; // // float lightDistance = length(fragToLight); // // float diskRadius = 0.00001; // // float diskRadius = 1.0; // // float diskRadius = 0.05; // float diskRadius = 5.0 / screen_res.w;// (1.0 + (/*viewDistance*/viewDistance / screen_res.w)) / 25.0; // // float diskRadius = lightDistance; // for(int i = 0; i < samples; ++i) // { // float currentDepth = VectorToDepth(fragToLight + sampleOffsetDirections[i] * diskRadius) + bias; // // float closestDepth = texture(depthMap, fragToLight).r; // // closestDepth *= far_plane; // Undo mapping [0;1] // /* if(currentDepth - bias > closestDepth) // shadow += 1.0;*/ // float visibility = texture(t_point_shadow_maps, vec4(fragToLight, currentDepth)/*, -2.5*/); // shadow += visibility; // // float closestDepth = texture(t_shadow_maps, vec3(fragToLight)/*, -2.5*/).r; // // shadow += closestDepth > currentDepth ? 1.0 : 0.0; // } // shadow /= float(samples); // // shadow = shadow * shadow * (3.0 - 2.0 * shadow); // // use the light to fragment vector to sample from the depth map // // float bias = 0.0;///*0.05*/0.01;//0.05;// 0.05; // // float closestDepth = texture(t_shadow_maps, /*vec4*/vec3(fragToLight/*, (lightIndex + 1)*//* * 6*/)/*, 0.0*//*, 0.0*//*, bias*/).r; // // // // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, lightIndex), bias); // // // // it is currently in linear range between [0,1]. Re-transform back to original value // // closestDepth = (closestDepth + 0.0) * screen_res.w; // far plane // // // // now test for shadows // // // // float shadow = /*currentDepth*/(screen_res.w - bias) > closestDepth ? 1.0 : 0.0; // // float shadow = currentDepth - bias < closestDepth ? 1.0 : 0.0; // // float visibility = textureProj(t_shadow_maps, vec4(fragToLight, lightIndex), bias); // // float visibility = texture(t_shadow_maps, vec4(fragToLight, lightIndex + 1), -(currentDepth/* + screen_res.z*/) / screen_res.w);// / (screen_res.w/* - screen_res.z*/)/*1.0 -bias*//*-(currentDepth - bias) / screen_res.w*//*-screen_res.w*/); // // currentDepth += bias; // // currentDepth = -1000.0 / (currentDepth + 10000.0); // // currentDepth /= screen_res.w; // // float currentDepth = VectorToDepth(fragToLight) + bias; // // float visibility = texture(t_shadow_maps, vec4(fragToLight, currentDepth));// / (screen_res.w/* - screen_res.z*/)/*1.0 -bias*//*-(currentDepth - bias) / screen_res.w*//*-screen_res.w*/); // // return visibility == 1.0 ? 1.0 : 0.0; // return shadow; } float ShadowCalculationDirected(in vec3 fragPos)//in vec4 /*light_pos[2]*/sun_pos, vec3 fragPos) { float bias = 0.000;//0.0005;//-0.0001;// 0.05 / (2.0 * view_distance.x); float diskRadius = 0.01; const vec3 sampleOffsetDirections[20] = vec3[] ( vec3( 1, 1, 1), vec3( 1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1), vec3( 1, 1, -1), vec3( 1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1), vec3( 1, 1, 0), vec3( 1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0), vec3( 1, 0, 1), vec3(-1, 0, 1), vec3( 1, 0, -1), vec3(-1, 0, -1), vec3( 0, 1, 1), vec3( 0, -1, 1), vec3( 0, -1, -1), vec3( 0, 1, -1) // vec3(0, 0, 0) ); /* if (lightIndex >= light_shadow_count.z) { return 1.0; } */ // vec3 fragPos = sun_pos.xyz;// / sun_pos.w;//light_pos[lightIndex].xyz; // sun_pos.z += sun_pos.w * bias; mat4 texture_mat = shadowMats[0].texture_mat; vec4 sun_pos = texture_mat * vec4(fragPos, 1.0); // sun_pos.z -= sun_pos.w * bias; float visibility = textureProj(sampler2DShadow(t_directed_shadow_maps, s_directed_shadow_maps), sun_pos); /* float visibilityLeft = textureProj(t_directed_shadow_maps, sun_shadow.texture_mat * vec4(fragPos + vec3(0.0, -diskRadius, 0.0), 1.0)); float visibilityRight = textureProj(t_directed_shadow_maps, sun_shadow.texture_mat * vec4(fragPos + vec3(0.0, diskRadius, 0.0), 1.0)); */ // float nearVisibility = textureProj(t_directed_shadow_maps + vec3(0.001, sun_pos)); // float visibility = textureProj(t_directed_shadow_maps, vec4(fragPos.xy, /*lightIndex, */fragPos.z + bias, sun_pos.w)); // return visibility; // return min(visibility, min(visibilityLeft, visibilityRight)); // return mix(visibility, 0.0, sun_pos.z < -1.0); // return mix(mix(0.0, 1.0, visibility == 1.0), 1.0, sign(sun_pos.w) * sun_pos.z > /*1.0*/abs(sun_pos.w)); // return (visibility - 0.5) * (visibility - 0.5) * 2.0 * sign(visibility - 0.5) + 0.5;// visibility > 0.75 ? visibility : 0.0;// visibility > 0.9 ? 1.0 : 0.0; return visibility; // return visibility == 1.0 ? 1.0 : 0.0; // return abs(fragPos.y - round(fragPos.y)) <= 0.1 || abs(fragPos.x - round(fragPos.x)) <= 0.1 ? ( visibility == 1.0 ? 1.0 : 0.0) : visibility; /* if (visibility == 1.0) { return 1.0; } */ // return visibility; /* if (fragPos.z > 1.0) { return 1.0; } */ // vec3 snapToZ = abs(fragPos - vec3(ivec3(fragPos))); // fract(abs(fragPos)); // // snapToZ = min(snapToZ, 1.0 - snapToZ); // const float EDGE_DIST = 0.01; // snapToZ = mix(vec3(0.0), vec3(1.0), lessThanEqual(snapToZ, vec3(EDGE_DIST))); // // float snapToZDist = dot(snapToZ, snapToZ); // if (visibility <= 0.75 && /*fract(abs(fragPos.xy)), vec2(0.1)))*/ /*snapToZDist <= 0.25*//*all(lessThan(snapToZ, vec3(0.1)))(*/ // snapToZ.x + snapToZ.y + snapToZ.z >= 2.0) { // return 0.0; // } // int samples = 20; // float shadow = 0.0; // // float bias = 0.0001; // // float viewDistance = length(cam_pos.xyz - fragPos); // // float diskRadius = 0.2 * (1.0 + (viewDistance / screen_res.w)) / 25.0; // // float diskRadius = 0.0003;//0.005;// / (2.0 * view_distance.x);//(1.0 + (viewDistance / screen_res.w)) / 25.0; // fragPos = sun_pos.xyz / sun_pos.w; // for(int i = 0; i < samples; ++i) // { // vec3 currentDepth = fragPos + vec3(sampleOffsetDirections[i].xyz) * diskRadius + bias; // visibility = texture(t_directed_shadow_maps, currentDepth);//vec4(currentDepth.xy, lightIndex, currentDepth.z)/*, -2.5*/); // // visibility = texture(t_directed_shadow_maps, vec4(currentDepth.xy, lightIndex, currentDepth.z)/*, -2.5*/); // shadow += visibility; // // mix(visibility, 1.0, visibility >= 0.5); // } // shadow /= float(samples); // return shadow; } #elif (SHADOW_MODE == SHADOW_MODE_NONE || SHADOW_MODE == SHADOW_MODE_CHEAP) float ShadowCalculationPoint(uint lightIndex, vec3 fragToLight, vec3 fragNorm, /*float currentDepth*/vec3 fragPos) { return 1.0; } #endif #else float ShadowCalculationPoint(uint lightIndex, vec3 fragToLight, vec3 fragNorm, /*float currentDepth*/vec3 fragPos) { return 1.0; } #endif #endif