#version 330 core #include #include in vec3 f_pos; in vec3 f_chunk_pos; flat in uint f_pos_norm; // in float f_alt; // in vec4 f_shadow; in vec3 f_col; in float f_light; in float f_ao; out vec4 tgt_color; #include #include #include void main() { // First 3 normals are negative, next 3 are positive vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); // TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction. uint norm_axis = (f_pos_norm >> 30) & 0x3u; // Increase array access by 3 to access positive values uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u; // Use an array to avoid conditional branching vec3 f_norm = normals[(f_pos_norm >> 29) & 0x7u]; // Whether this face is facing fluid or not. bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u); vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; // vec3 view_dir = normalize(f_pos - cam_pos.xyz); vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); float f_alt = alt_at(f_pos.xy); vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); float alpha = 1.0; // TODO: Possibly angle with water surface into account? Since we can basically assume it's horizontal. const float n2 = 1.01; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); // float faces_fluid = faces_fluid && f_pos.z <= floor(f_alt); float fluid_alt = max(ceil(f_pos.z), floor(f_alt)); float R_s = /*(f_pos.z < f_alt)*/faces_fluid /*&& f_pos.z <= fluid_alt*/ ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); // vec3 surf_color = /*srgb_to_linear*/(f_col); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ // float f_alt = alt_at(f_pos.xy); // vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; float max_light = 0.0; // After shadows are computed, we use a refracted sun and moon direction. // sun_dir = faces_fluid && sun_shade_frac > 0.0 ? refract(sun_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : sun_dir; // moon_dir = faces_fluid && moon_shade_frac > 0.0 ? refract(moon_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : moon_dir; // Compute attenuation due to water from the camera. vec3 mu = faces_fluid/* && f_pos.z <= fluid_alt*/ ? MU_WATER : vec3(0.0); // NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water. vec3 cam_attenuation = compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz); // Computing light attenuation from water. vec3 emitted_light, reflected_light; // To account for prior saturation float f_light = faces_fluid ? 1.0 : pow(f_light, 1.5); float point_shadow = shadow_at(f_pos, f_norm); max_light += get_sun_diffuse2(f_norm, /*time_of_day.x, */sun_dir, moon_dir, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, 1.0, emitted_light, reflected_light); emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW); reflected_light *= f_light * point_shadow * shade_frac; max_light *= f_light * point_shadow * shade_frac; max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, emitted_light, reflected_light); // float f_ao = 1.0; float ao = /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1; emitted_light *= ao; reflected_light *= ao; /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ // float point_shadow = shadow_at(f_pos, f_norm); // vec3 point_light = light_at(f_pos, f_norm); // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, k_a * f_light, k_d * f_light, k_s * f_light, alpha, emitted_light, reflected_light); // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // float point_shadow = shadow_at(f_pos, f_norm); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light * point_shadow; // vec3 point_light = light_at(f_pos, f_norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // reflected_light += light_reflection_factor(norm, cam_to_frag, , vec3 k_d, vec3 k_s, float alpha) { // light_reflection_factorplight_reflection_factor // vec3 surf_color = illuminate(srgb_to_linear(f_col), light, diffuse_light, ambient_light); vec3 col = srgb_to_linear(f_col + hash(vec4(floor(f_chunk_pos * 3.0 - f_norm * 0.5), 0)) * 0.02); // Small-scale noise vec3 surf_color = illuminate(max_light, col * emitted_light, col * reflected_light); float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x); vec4 clouds; vec3 fog_color = get_sky_color(cam_to_frag/*view_dir*/, time_of_day.x, cam_pos.xyz, f_pos, 1.0, true, clouds); // vec3 color = surf_color; vec3 color = mix(mix(surf_color, fog_color, fog_level), clouds.rgb, clouds.a); tgt_color = vec4(color, 1.0); }