#include uniform sampler2D t_map; vec2 pos_to_uv(vec2 pos) { vec2 uv_pos = pos / 32768.0; return vec2(uv_pos.x, 1.0 - uv_pos.y); } float alt_at(vec2 pos) { return texture(t_map, pos_to_uv(pos)).a * (1300.0) + 140.0; return 0.0 + pow(texture(t_noise, pos * 0.00005).x * 1.4, 3.0) * 1000.0 + texture(t_noise, pos * 0.001).x * 100.0 + texture(t_noise, pos * 0.003).x * 30.0; } vec2 splay(vec2 pos) { return pos * pow(length(pos) * 0.5, 3.0); } vec3 lod_norm(vec2 pos) { const float SAMPLE_W = 32; float altx0 = alt_at(pos + vec2(-1, 0) * SAMPLE_W); float altx1 = alt_at(pos + vec2(1, 0) * SAMPLE_W); float alty0 = alt_at(pos + vec2(0, -1) * SAMPLE_W); float alty1 = alt_at(pos + vec2(0, 1) * SAMPLE_W); float slope = abs(altx1 - altx0) + abs(alty0 - alty1); return normalize(vec3( (altx0 - altx1) / SAMPLE_W, (alty0 - alty1) / SAMPLE_W, SAMPLE_W / (slope + 0.00001) // Avoid NaN )); } vec3 lod_pos(vec2 v_pos, vec2 focus_pos) { vec2 hpos = focus_pos.xy + splay(v_pos) * 1000000.0; // Remove spiking by "pushing" vertices towards local optima vec2 nhpos = hpos; for (int i = 0; i < 3; i ++) { nhpos -= lod_norm(hpos).xy * 15.0; } hpos = hpos + normalize(nhpos - hpos + 0.001) * min(length(nhpos - hpos), 32); return vec3(hpos, alt_at(hpos)); } vec3 lod_col(vec2 pos) { //return vec3(0, 0.5, 0); return texture(t_map, pos_to_uv(pos)).rgb; //+ (texture(t_noise, pos * 0.04 + texture(t_noise, pos * 0.005).xy * 2.0 + texture(t_noise, pos * 0.06).xy * 0.6).x - 0.5) * 0.1; }