#version 330 core // https://www.shadertoy.com/view/XdsyWf #include #include in vec3 f_pos; flat in uint f_pos_norm; in vec3 f_col; in float f_light; layout (std140) uniform u_locals { vec3 model_offs; float load_time; }; uniform sampler2D t_waves; out vec4 tgt_color; #include #include vec3 warp_normal(vec3 norm, vec3 pos, float time) { return normalize(norm + smooth_rand(pos * 1.0, time * 1.0) * 0.05 + smooth_rand(pos * 0.25, time * 0.25) * 0.1); } float wave_height(vec3 pos) { vec3 big_warp = ( texture(t_waves, fract(pos.xy * 0.03 + tick.x * 0.01)).xyz * 0.5 + texture(t_waves, fract(pos.yx * 0.03 - tick.x * 0.01)).xyz * 0.5 + vec3(0) ); vec3 warp = ( texture(t_noise, fract(pos.yx * 0.1 + tick.x * 0.02)).xyz * 0.3 + texture(t_noise, fract(pos.yx * 0.1 - tick.x * 0.02)).xyz * 0.3 + vec3(0) ); float height = ( (texture(t_noise, pos.xy * 0.03 + big_warp.xy + tick.x * 0.05).y - 0.5) * 1.0 + (texture(t_noise, pos.yx * 0.03 + big_warp.yx - tick.x * 0.05).y - 0.5) * 1.0 + (texture(t_waves, pos.xy * 0.1 + warp.xy + tick.x * 0.1).x - 0.5) * 0.5 + (texture(t_waves, pos.yx * 0.1 + warp.yx - tick.x * 0.1).x - 0.5) * 0.5 + (texture(t_noise, pos.yx * 0.3 + warp.xy * 0.5 + tick.x * 0.1).x - 0.5) * 0.2 + (texture(t_noise, pos.yx * 0.3 + warp.yx * 0.5 - tick.x * 0.1).x - 0.5) * 0.2 + (texture(t_noise, pos.yx * 1.0 + warp.yx * 0.0 - tick.x * 0.1).x - 0.5) * 0.05 + 0.0 ); return pow(abs(height), 0.5) * sign(height) * 5.5; } void main() { // First 3 normals are negative, next 3 are positive vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); // TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction. uint norm_axis = (f_pos_norm >> 30) & 0x3u; // Increase array access by 3 to access positive values uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u; // Use an array to avoid conditional branching vec3 f_norm = normals[norm_axis + norm_dir]; vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); vec3 view_dir = normalize(-vec3(vert_pos4) / vert_pos4.w); float frag_dist = length(f_pos - cam_pos.xyz); vec3 b_norm; if (f_norm.z > 0.0) { b_norm = vec3(1, 0, 0); } else if (f_norm.x > 0.0) { b_norm = vec3(0, 1, 0); } else { b_norm = vec3(0, 0, 1); } vec3 c_norm = cross(f_norm, b_norm); float wave00 = wave_height(f_pos); float wave10 = wave_height(f_pos + vec3(0.1, 0, 0)); float wave01 = wave_height(f_pos + vec3(0, 0.1, 0)); float slope = abs(wave00 - wave10) * abs(wave00 - wave01); vec3 nmap = vec3( -(wave10 - wave00) / 0.1, -(wave01 - wave00) / 0.1, 0.1 / slope ); nmap = mix(vec3(0, 0, 1), normalize(nmap), min(1.0 / pow(frag_dist, 0.75), 1)); vec3 norm = f_norm * nmap.z + b_norm * nmap.x + c_norm * nmap.y; vec4 _clouds; vec3 reflect_ray_dir = reflect(cam_to_frag/*-view_dir*/, norm); /* vec4 reflect_ray_dir4 = view_mat * vec4(reflect_ray_dir, 1.0); reflect_ray_dir = normalize(vec3(reflect_ray_dir4) / reflect_ray_dir4.w); */ // vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); vec3 reflect_color = get_sky_color(reflect_ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.25, false, _clouds) * f_light; vec3 surf_color = /*srgb_to_linear*/(vec3(0.2, 0.5, 1.0)); vec3 k_a = vec3(1.0); vec3 k_d = surf_color; vec3 k_s = 2.0 * reflect_color; float alpha = 0.255; vec3 emitted_light, reflected_light; // vec3 light, diffuse_light, ambient_light; float point_shadow = shadow_at(f_pos, f_norm); // 0 = 100% reflection, 1 = translucent water float passthrough = pow(dot(faceforward(f_norm, f_norm, cam_to_frag/*-view_dir*/), -cam_to_frag/*view_dir*/), 0.5); vec3 diffuse_light_point = vec3(0.0); get_sun_diffuse(norm, time_of_day.x, view_dir, k_a * f_light * point_shadow, vec3(0.0), /*vec3(f_light * point_shadow)*//*reflect_color*/k_s * f_light * point_shadow, alpha, emitted_light, reflected_light); lights_at(f_pos, norm, view_dir, k_a, vec3(1.0), vec3(0.0), alpha, emitted_light, diffuse_light_point); vec3 dump_light = vec3(0.0); vec3 specular_light_point = vec3(0.0); lights_at(f_pos, norm, view_dir, vec3(0.0), vec3(0.0), vec3(1.0), alpha, dump_light, specular_light_point); float reflected_light_point = diffuse_light_point.r + f_light * point_shadow; reflected_light += k_d * (diffuse_light_point + f_light * point_shadow) + k_s * specular_light_point; // get_sun_diffuse(norm, time_of_day.x, light, diffuse_light, ambient_light, 0.0); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light * point_shadow; // vec3 point_light = light_at(f_pos, norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // vec3 surf_color = srgb_to_linear(vec3(0.2, 0.5, 1.0)) * light * diffuse_light * ambient_light; surf_color = illuminate(surf_color * emitted_light, reflected_light); float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x); vec4 clouds; vec3 fog_color = get_sky_color(cam_to_frag, time_of_day.x, cam_pos.xyz, f_pos, 0.25, true, clouds); // vec3 reflect_ray_dir = reflect(cam_to_frag, norm); // Hack to prevent the reflection ray dipping below the horizon and creating weird blue spots in the water // reflect_ray_dir.z = max(reflect_ray_dir.z, 0.01); // vec4 _clouds; // vec3 reflect_color = get_sky_color(reflect_ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.25, false, _clouds) * f_light; // Tint // reflect_color = mix(reflect_color, surf_color, 0.6); // vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(f_light * point_shadow + point_light) * 0.25)), passthrough); // vec4 color = mix(vec4(reflect_color * 2.0, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*/(/*f_light * point_shadow*/f_light * point_shadow + reflected_light_point/* + point_light*//*reflected_light*/) * 0.25)), passthrough); // vec4 color = mix(vec4(surf_color, 1.0), vec4(surf_color, 0.0), passthrough); //vec4 color = vec4(surf_color, 1.0); vec4 color = vec4(surf_color, mix(1.0, 1.0 / (1.0 + 0.25 * /*diffuse_light*/(/*f_light * point_shadow*/reflected_light_point)), passthrough)); tgt_color = mix(mix(color, vec4(fog_color, 0.0), fog_level), vec4(clouds.rgb, 0.0), clouds.a); }