#version 430 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include #include #include #include layout(location = 0) in vec3 v_pos; // in uint v_col; layout(location = 1) in uint v_norm_ao; layout(location = 2) in float inst_time; layout(location = 3) in float inst_lifespan; layout(location = 4) in float inst_entropy; layout(location = 5) in int inst_mode; layout(location = 6) in vec3 inst_dir; layout(location = 7) in vec3 inst_pos; layout(location = 0) out vec3 f_pos; layout(location = 1) flat out vec3 f_norm; layout(location = 2) out vec4 f_col; //layout(location = x) out float f_ao; //layout(location = x) out float f_light; layout(location = 3) out float f_reflect; const float SCALE = 1.0 / 11.0; // Modes const int SMOKE = 0; const int FIRE = 1; const int GUN_POWDER_SPARK = 2; const int SHRAPNEL = 3; const int FIREWORK_BLUE = 4; const int FIREWORK_GREEN = 5; const int FIREWORK_PURPLE = 6; const int FIREWORK_RED = 7; const int FIREWORK_WHITE = 8; const int FIREWORK_YELLOW = 9; const int LEAF = 10; const int FIREFLY = 11; const int BEE = 12; const int GROUND_SHOCKWAVE = 13; const int ENERGY_HEALING = 14; const int ENERGY_NATURE = 15; const int FLAMETHROWER = 16; const int FIRE_SHOCKWAVE = 17; const int FIRE_BOWL = 18; const int SNOW = 19; const int EXPLOSION = 20; const int ICE = 21; const int LIFESTEAL_BEAM = 22; const int CULTIST_FLAME = 23; const int STATIC_SMOKE = 24; const int BLOOD = 25; const int ENRAGED = 26; const int BIG_SHRAPNEL = 27; const int LASER = 28; const int BUBBLES = 29; const int WATER = 30; const int ICE_SPIKES = 31; const int DRIP = 32; const int TORNADO = 33; const int DEATH = 34; const int ENERGY_BUFFING = 35; const int WEB_STRAND = 36; const int BLACK_SMOKE = 37; const int LIGHTNING = 38; const int STEAM = 39; const int BARRELORGAN = 40; const int POTION_SICKNESS = 41; const int GIGA_SNOW = 42; const int CYCLOPS_CHARGE = 43; const int PORTAL_FIZZ = 45; const int INK = 46; const int WHIRLWIND = 47; // meters per second squared (acceleration) const float earth_gravity = 9.807; struct Attr { vec3 offs; vec3 scale; vec4 col; mat4 rot; }; float lifetime = time_since(inst_time); // Retrieves inst_time, repeating over a period. This will be consistent // over a time overflow. float loop_inst_time(float period, float scale) { if (tick.x < inst_time) { return mod(mod(tick_overflow * scale, period) + inst_time * scale, period); } else { return mod(inst_time * scale, period); } } vec3 linear_motion(vec3 init_offs, vec3 vel) { return init_offs + vel * lifetime; } vec3 quadratic_bezier_motion(vec3 start, vec3 ctrl0, vec3 end) { float t = lifetime; float u = 1 - lifetime; return u*u*start + t*u*ctrl0 + t*t*end; } vec3 grav_vel(float grav) { return vec3(0, 0, -grav * lifetime); } float exp_scale(float factor) { return 1 / (1 - lifetime * factor); } float linear_scale(float factor) { return lifetime * factor; } float percent() { return lifetime / inst_lifespan; } float slow_end(float factor) { return (1 + factor) * percent() / (percent() + factor); } float slow_start(float factor) { return 1-(1 + factor) * (1-percent()) / ((1-percent()) + factor); } float start_end(float from, float to) { return mix(from, to, lifetime / inst_lifespan); } mat4 spin_in_axis(vec3 axis, float angle) { axis = normalize(axis); float s = sin(angle); float c = cos(angle); float oc = 1.0 - c; return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0, 0, 0, 0, 1); } mat4 identity() { return mat4( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } vec3 perp_axis1(vec3 axis) { return normalize(vec3(axis.y + axis.z, -axis.x + axis.z, -axis.x - axis.y)); } vec3 perp_axis2(vec3 axis1, vec3 axis2) { return normalize(vec3(axis1.y * axis2.z - axis1.z * axis2.y, axis1.z * axis2.x - axis1.x * axis2.z, axis1.x * axis2.y - axis1.y * axis2.x)); } // Line is the axis of the spiral, it goes from the start position to the end position // Radius is the distance from the axis the particle is // Time function is some value that ideally goes from 0 to 1. When it is 0, it is as // the point (0, 0, 0), when it is 1, it is at the point provided by the coordinates of line // Frequency increases the frequency of rotation // Offset is an offset to the angle of the rotation vec3 spiral_motion(vec3 line, float radius, float time_function, float frequency, float offset) { vec3 axis2 = perp_axis1(line); vec3 axis3 = perp_axis2(line, axis2); return line * time_function + vec3( radius * cos(frequency * time_function - offset) * axis2.x + radius * sin(frequency * time_function - offset) * axis3.x, radius * cos(frequency * time_function - offset) * axis2.y + radius * sin(frequency * time_function - offset) * axis3.y, radius * cos(frequency * time_function - offset) * axis2.z + radius * sin(frequency * time_function - offset) * axis3.z); } void main() { float rand0 = hash(vec4(inst_entropy + 0)); float rand1 = hash(vec4(inst_entropy + 1)); float rand2 = hash(vec4(inst_entropy + 2)); float rand3 = hash(vec4(inst_entropy + 3)); float rand4 = hash(vec4(inst_entropy + 4)); float rand5 = hash(vec4(inst_entropy + 5)); float rand6 = hash(vec4(inst_entropy + 6)); float rand7 = hash(vec4(inst_entropy + 7)); float rand8 = hash(vec4(inst_entropy + 8)); float rand9 = hash(vec4(inst_entropy + 9)); vec3 start_pos = inst_pos - focus_off.xyz; Attr attr; f_reflect = 1.0; switch(inst_mode) { case SMOKE: attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1) ), vec3(linear_scale(0.5)), vec4(vec3(0.8, 0.8, 1) * 0.125 * (3.8 + rand0), start_end(1.0, 0.0)), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5) ); break; case BLACK_SMOKE: attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1) ), vec3(linear_scale(0.5)), vec4(vec3(0.8, 0.8, 1) * 0.125 * (1.8 + rand0), start_end(1.0, 0.0)), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5) ); break; case FIRE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0.0), vec3(rand2 * 0.1, rand3 * 0.1, 2.0 + rand4 * 1.0) ), vec3(1.0), vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case FIRE_BOWL: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(normalize(vec2(rand0, rand1)) * 0.1, 0.6), vec3(rand2 * 0.2, rand3 * 0.5, 0.8 + rand4 * 0.5) ), vec3(0.2), // Size vec4(2, 1.5 + rand5 * 0.5, 0, start_end(1.0, 0.0)), // Colour spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case GUN_POWDER_SPARK: attr = Attr( linear_motion( normalize(vec3(rand0, rand1, rand3)) * 0.3, normalize(vec3(rand4, rand5, rand6)) * 4.0 + grav_vel(earth_gravity) ), vec3(1.0), vec4(3.5, 3 + rand7, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case SHRAPNEL: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 20.0 + grav_vel(earth_gravity) ), vec3(1), vec4(vec3(0.25), 1), spin_in_axis(vec3(1,0,0),0) ); break; case BIG_SHRAPNEL: float brown_color = 0.05 + 0.1 * rand1; attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 15.0 + grav_vel(earth_gravity) ), vec3(5 * (1 - percent())), vec4(vec3(brown_color, brown_color / 2, 0), 1), spin_in_axis(vec3(1,0,0),0) ); break; case FIREWORK_BLUE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(0, 0, 2), 1), identity() ); break; case FIREWORK_GREEN: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(0, 2, 0), 1), identity() ); break; case FIREWORK_PURPLE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 0, 2), 1), identity() ); break; case FIREWORK_RED: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 0, 0), 1), identity() ); break; case FIREWORK_WHITE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 2, 2), 1), identity() ); break; case FIREWORK_YELLOW: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 2, 0), 1), identity() ); break; case LEAF: attr = Attr( linear_motion( vec3(0), vec3(0, 0, -2) ) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 2.0, vec3(4), vec4(vec3(0.2 + rand7 * 0.2, 0.2 + (0.25 + rand6 * 0.5) * 0.3, 0) * (0.75 + rand1 * 0.5), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case SNOW: float height = mix(-4, 60, pow(start_end(1, 0), 3)); float wind_speed = (inst_pos.z - 2000) * 0.025; vec3 offset = linear_motion(vec3(0), vec3(1, 1, 0) * wind_speed); float end_alt = alt_at(start_pos.xy + offset.xy); attr = Attr( offset + vec3(0, 0, end_alt - start_pos.z + height) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 3, vec3(mix(4, 0, pow(start_end(1, 0), 4))), vec4(1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case FIREFLY: float raise = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2); attr = Attr( vec3(0, 0, raise * 5.0) + vec3( sin(lifetime * 1.0 + rand0) + sin(lifetime * 7.0 + rand3) * 0.3, sin(lifetime * 3.0 + rand1) + sin(lifetime * 8.0 + rand4) * 0.3, sin(lifetime * 2.0 + rand2) + sin(lifetime * 9.0 + rand5) * 0.3 ), vec3(raise), vec4(vec3(10.3, 9, 1.5), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case BEE: float lower = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2); attr = Attr( vec3(0, 0, lower * -0.5) + vec3( sin(lifetime * 2.0 + rand0) + sin(lifetime * 9.0 + rand3) * 0.3, sin(lifetime * 3.0 + rand1) + sin(lifetime * 10.0 + rand4) * 0.3, sin(lifetime * 4.0 + rand2) + sin(lifetime * 11.0 + rand5) * 0.3 ) * 0.5, vec3(lower), vec4(vec3(1, 0.7, 0), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case GROUND_SHOCKWAVE: attr = Attr( vec3(0.0), vec3(11.0, 11.0, (33.0 * rand0 * sin(2.0 * lifetime * 3.14 * 2.0))) / 3, vec4(vec3(0.32 + (rand0 * 0.04), 0.22 + (rand1 * 0.03), 0.05 + (rand2 * 0.01)), 1), spin_in_axis(vec3(1,0,0),0) ); break; case ENERGY_HEALING: f_reflect = 0.0; float spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(0, 1.7, 0.7) * 3, 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case LIFESTEAL_BEAM: f_reflect = 0.0; float green_col = 0.8 + 0.8 * sin(tick_loop(2 * PI, 5, lifetime * 5)); float purple_col = 0.6 + 0.5 * sin(loop_inst_time(2 * PI, 4)) - min(max(green_col - 1, 0), 0.3); float red_col = 1.15 + 0.1 * sin(loop_inst_time(2 * PI, 3)) - min(max(green_col - 1, 0), 0.3) - max(purple_col - 0.5, 0); attr = Attr( spiral_motion(inst_dir, 0.3 * (floor(2 * rand0 + 0.5) - 0.5) * min(linear_scale(10), 1), lifetime / inst_lifespan, 10.0, loop_inst_time(2.0 * PI, 1.0)), vec3((1.7 - 0.7 * abs(floor(2 * rand0 - 0.5) + 0.5)) * (1.5 + 0.5 * sin(tick_loop(2 * PI, 10, -lifetime * 4)))), vec4(vec3(red_col + purple_col * 0.6, green_col + purple_col * 0.35, purple_col), 1), spin_in_axis(inst_dir, tick_loop(2 * PI)) ); break; case ENERGY_NATURE: f_reflect = 0.0; spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(0, 1.7, 1.3), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case FLAMETHROWER: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((2.5 * (1 - slow_start(0.2)))), vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case EXPLOSION: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(0.25) + 0.3 * grav_vel(earth_gravity), vec3((3 * (1 - slow_start(0.1)))), vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case ICE: f_reflect = 0.0; // Ice doesn't reflect to look like magic float ice_color = 1.9 + rand5 * 0.3; attr = Attr( inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(2.0) + 0.3 * grav_vel(earth_gravity), vec3((5 * (1 - slow_start(.1)))), vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIRE_SHOCKWAVE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( vec3(rand0, rand1, lifetime * 10 + rand2), vec3((5 * (1 - slow_start(0.5)))), vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand3, rand4, rand5), rand6) ); break; case CULTIST_FLAME: f_reflect = 0.0; // Fire doesn't reflect light, it emits it float purp_color = 0.9 + 0.3 * rand3; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(purp_color, 0.0, purp_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case STATIC_SMOKE: attr = Attr( vec3(0), vec3((0.5 * (1 - slow_start(0.8)))), vec4(1.0), spin_in_axis(vec3(rand6, rand7, rand8), rand9) ); break; case BLOOD: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 5.0 + grav_vel(earth_gravity) ), vec3((2.0 * (1 - slow_start(0.8)))), vec4(1, 0, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case ENRAGED: f_reflect = 0.0; float red_color = 1.2 + 0.3 * rand3; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(red_color, 0.0, 0.0, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case LASER: f_reflect = 0.0; vec3 perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); offset = vec3(0.0); if (rand0 > 0.0) { offset = perp_axis * 0.5; } else { offset = perp_axis * -0.5; } attr = Attr( inst_dir * percent() + offset, vec3(1.0, 1.0, 50.0), vec4(vec3(2.0, 0.0, 0.0), 1), spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case BUBBLES: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it float blue_color = 1.5 + 0.2 * rand3 + 1.5 * max(floor(rand4 + 0.3), 0.0); float size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(size), vec4(0.5 * blue_color, 0.75 * blue_color, blue_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case WATER: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it blue_color = 1.25 + 0.2 * rand3 + 1.75 * max(floor(rand4 + 0.15), 0.0); size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(0.2)) + vec3(rand0, rand1, rand2) * 0.5, vec3(size), vec4(0.5 * blue_color, 0.9 * blue_color, blue_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 5 + 3 * rand9) ); break; case ICE_SPIKES: f_reflect = 0.0; // Ice doesn't reflect to look like magic ice_color = 1.7 + rand5 * 0.2; attr = Attr( vec3(0.0), vec3(11.0, 11.0, 11.0 * length(inst_dir) * 2.0 * (0.5 - abs(0.5 - slow_end(0.5)))) / 3, vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1), spin_in_axis(vec3(1,0,0),0) ); break; case DRIP: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) + grav_vel(earth_gravity) ), vec3((2.0 * (1 - slow_start(0.2)))), vec4(1, 1, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case TORNADO: f_reflect = 0.0; attr = Attr( spiral_motion(vec3(0, 0, 5), abs(rand0) + abs(rand1) * percent() * 3.0, percent(), 15.0 * abs(rand2), rand3), vec3((2.5 * (1 - slow_start(0.05)))), vec4(vec3(1.2 + 0.5 * percent()), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case DEATH: f_reflect = 0.0; attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 2.0 + rand4 * 0.6) ), vec3((1.2 * (1 - slow_start(.1)))), vec4(vec3(1.2 + 0.5 * percent()), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case ENERGY_BUFFING: f_reflect = 0.0; spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(1.4), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case WEB_STRAND: f_reflect = 0.0; perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); attr = Attr( inst_dir * percent(), vec3(1.0, 1.0, 50.0), vec4(vec3(2.0), 1), spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case LIGHTNING: f_reflect = 0.0; perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); float z = inst_dir.z * (percent() - 1.0); vec3 start_off = vec3(abs(fract(vec3(vec2(z) * vec2(0.015, 0.01), 0)) - 0.5) * z * 0.4); attr = Attr( inst_dir * percent() + start_off, vec3(max(3.0, 0.05 * length(start_pos + inst_dir * percent()))), vec4(10.0, 20.0, 50.0, 1.0),// * (1.0 - length(inst_dir) * 0.1), identity()//spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case STEAM: f_reflect = 0.0; // Magic steam doesn't reflect light, it emits it float steam_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(steam_size), vec4(vec3(0.7, 2.7, 1.3), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case BARRELORGAN: attr = Attr( linear_motion( vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5), vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5) ), vec3(exp_scale(-0.2)) * rand0, vec4(vec3(0.7, 2.7, 1.3), 1), spin_in_axis(vec3(1,0,0),0) ); break; case POTION_SICKNESS: attr = Attr( quadratic_bezier_motion( vec3(0.0), vec3(inst_dir.xy, 0.0), inst_dir ), vec3((2.0 * (1 - slow_start(0.8)))), vec4(0.075, 0.625, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case GIGA_SNOW: f_reflect = 0.0; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(vec3(2, 2, 2), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case CYCLOPS_CHARGE: f_reflect = 0.0; float burn_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(burn_size), vec4(vec3(6.9, 0.0, 0.0), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case PORTAL_FIZZ: attr = Attr( inst_dir * (0.7 + pow(percent(), 5)) + vec3( sin(lifetime * 1.25 + rand0 * 10) + sin(lifetime * 1.3 + rand3 * 10), sin(lifetime * 1.2 + rand1 * 10) + sin(lifetime * 1.4 + rand4 * 10), sin(lifetime * 5 + rand2) ) * 0.03, vec3(pow(1.0 - abs(percent() - 0.5) * 2.0, 0.2)), mix( vec4(mix(vec3(0.4, 0.8, 0.2), vec3(5, 10, 2), pow(percent(), 2)), 1), vec4(mix(vec3(0.6, 0.2, 0.8), vec3(9, 2, 10), pow(percent(), 2)), 1), clamp((dot(normalize(focus_pos.xyz - start_pos), inst_dir) - 0.25) * 3.0, 0.0, 1.0) ), /* vec4(vec3(1.8 - percent() * 2, 0.4 + percent() * 2, 5.0 + rand6), 1), */ spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case INK: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it float black_color = 0.3 + 0.2 * rand3 + 0.3 * max(floor(rand4 + 0.3), 0.0); float ink_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(ink_size), vec4(0.5 * black_color, 0.75 * black_color, black_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case WHIRLWIND: f_reflect = 0.0; attr = Attr( spiral_motion(vec3(0, 0, 3), abs(rand0) * 3 + percent() * 20.5, percent(), -8.0 + (rand0 * 3), rand1 * 360.), vec3((-2.5 * (1 - slow_start(0.05)))), vec4(vec3(1.3, 1.8, 2), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; default: attr = Attr( linear_motion( vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5), vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5) ), vec3(exp_scale(-0.2)) * rand0, vec4(1), spin_in_axis(vec3(1,0,0),0) ); break; } // Temporary: use shrinking particles as a substitute for fading ones attr.scale *= pow(attr.col.a, 0.25); f_pos = start_pos + (v_pos * attr.scale * SCALE * mat3(attr.rot) + attr.offs); #ifdef EXPERIMENTAL_CURVEDWORLD f_pos.z -= pow(distance(f_pos.xy + focus_off.xy, focus_pos.xy + focus_off.xy) * 0.05, 2); #endif // First 3 normals are negative, next 3 are positive // TODO: Make particle normals match orientation vec4 normals[6] = vec4[](vec4(-1,0,0,0), vec4(1,0,0,0), vec4(0,-1,0,0), vec4(0,1,0,0), vec4(0,0,-1,0), vec4(0,0,1,0)); f_norm = // inst_pos * normalize(((normals[(v_norm_ao >> 0) & 0x7u]) * attr.rot).xyz); //vec3 col = vec3((uvec3(v_col) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) / 255.0; f_col = vec4(attr.col.rgb, attr.col.a); gl_Position = all_mat * vec4(f_pos, 1); }