use crate::{ comp::{ arthropod, biped_large, biped_small, bird_medium, humanoid, quadruped_low, quadruped_medium, quadruped_small, ship, Body, UtteranceKind, }, path::Chaser, rtsim::{NpcInput, RtSimController}, trade::{PendingTrade, ReducedInventory, SiteId, SitePrices, TradeId, TradeResult}, uid::Uid, }; use serde::{Deserialize, Serialize}; use specs::{Component, DerefFlaggedStorage, Entity as EcsEntity}; use std::{collections::VecDeque, fmt}; use strum::{EnumIter, IntoEnumIterator}; use vek::*; use super::{dialogue::Subject, Pos}; pub const DEFAULT_INTERACTION_TIME: f32 = 3.0; pub const TRADE_INTERACTION_TIME: f32 = 300.0; const SECONDS_BEFORE_FORGET_SOUNDS: f64 = 180.0; //intentionally very few concurrent action state variables are allowed. This is // to keep the complexity of our AI from getting too large, too quickly. // Originally I was going to provide 30 of these, but if we decide later that // this is too many and somebody is already using 30 in one of their AI, it will // be difficult to go back. /// The number of timers that a single Action node can track concurrently /// Define constants within a given action node to index between them. const ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS: usize = 5; /// The number of float counters that a single Action node can track /// concurrently Define constants within a given action node to index between /// them. const ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS: usize = 5; /// The number of integer counters that a single Action node can track /// concurrently Define constants within a given action node to index between /// them. const ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS: usize = 5; /// The number of booleans that a single Action node can track concurrently /// Define constants within a given action node to index between them. const ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS: usize = 5; /// The number of positions that can be remembered by an agent const ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS: usize = 5; #[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)] pub enum Alignment { /// Wild animals and gentle giants Wild, /// Dungeon cultists and bandits Enemy, /// Friendly folk in villages Npc, /// Farm animals and pets of villagers Tame, /// Pets you've tamed with a collar Owned(Uid), /// Passive objects like training dummies Passive, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum Mark { Merchant, Guard, } impl Alignment { // Always attacks pub fn hostile_towards(self, other: Alignment) -> bool { match (self, other) { (Alignment::Passive, _) => false, (_, Alignment::Passive) => false, (Alignment::Enemy, Alignment::Enemy) => false, (Alignment::Enemy, Alignment::Wild) => false, (Alignment::Wild, Alignment::Enemy) => false, (Alignment::Wild, Alignment::Wild) => false, (Alignment::Npc, Alignment::Wild) => false, (Alignment::Npc, Alignment::Enemy) => true, (_, Alignment::Enemy) => true, (Alignment::Enemy, _) => true, _ => false, } } // Usually never attacks pub fn passive_towards(self, other: Alignment) -> bool { match (self, other) { (Alignment::Enemy, Alignment::Enemy) => true, (Alignment::Owned(a), Alignment::Owned(b)) if a == b => true, (Alignment::Npc, Alignment::Npc) => true, (Alignment::Npc, Alignment::Tame) => true, (Alignment::Enemy, Alignment::Wild) => true, (Alignment::Wild, Alignment::Enemy) => true, (Alignment::Tame, Alignment::Npc) => true, (Alignment::Tame, Alignment::Tame) => true, (_, Alignment::Passive) => true, _ => false, } } // Never attacks pub fn friendly_towards(self, other: Alignment) -> bool { match (self, other) { (Alignment::Enemy, Alignment::Enemy) => true, (Alignment::Owned(a), Alignment::Owned(b)) if a == b => true, (Alignment::Npc, Alignment::Npc) => true, (Alignment::Npc, Alignment::Tame) => true, (Alignment::Tame, Alignment::Npc) => true, (Alignment::Tame, Alignment::Tame) => true, (_, Alignment::Passive) => true, _ => false, } } } impl Component for Alignment { type Storage = DerefFlaggedStorage>; } bitflags::bitflags! { #[derive(Clone, Copy, Debug, Default)] pub struct BehaviorCapability: u8 { const SPEAK = 0b00000001; const TRADE = 0b00000010; } } bitflags::bitflags! { #[derive(Clone, Copy, Debug, Default)] pub struct BehaviorState: u8 { const TRADING = 0b00000001; const TRADING_ISSUER = 0b00000010; } } #[derive(Default, Copy, Clone, Debug)] pub enum TradingBehavior { #[default] None, RequireBalanced { trade_site: SiteId, }, AcceptFood, } impl TradingBehavior { fn can_trade(&self, alignment: Option, counterparty: Uid) -> bool { match self { TradingBehavior::RequireBalanced { .. } => true, TradingBehavior::AcceptFood => alignment == Some(Alignment::Owned(counterparty)), TradingBehavior::None => false, } } } /// # Behavior Component /// This component allow an Entity to register one or more behavior tags. /// These tags act as flags of what an Entity can do, or what it is doing. /// Behaviors Tags can be added and removed as the Entity lives, to update its /// state when needed #[derive(Default, Copy, Clone, Debug)] pub struct Behavior { capabilities: BehaviorCapability, state: BehaviorState, pub trading_behavior: TradingBehavior, } impl From for Behavior { fn from(capabilities: BehaviorCapability) -> Self { Behavior { capabilities, state: BehaviorState::default(), trading_behavior: TradingBehavior::None, } } } impl Behavior { /// Builder function /// Set capabilities if Option is Some #[must_use] pub fn maybe_with_capabilities( mut self, maybe_capabilities: Option, ) -> Self { if let Some(capabilities) = maybe_capabilities { self.allow(capabilities) } self } /// Builder function /// Set trade_site if Option is Some #[must_use] pub fn with_trade_site(mut self, trade_site: Option) -> Self { if let Some(trade_site) = trade_site { self.trading_behavior = TradingBehavior::RequireBalanced { trade_site }; } self } /// Set capabilities to the Behavior pub fn allow(&mut self, capabilities: BehaviorCapability) { self.capabilities.set(capabilities, true) } /// Unset capabilities to the Behavior pub fn deny(&mut self, capabilities: BehaviorCapability) { self.capabilities.set(capabilities, false) } /// Check if the Behavior is able to do something pub fn can(&self, capabilities: BehaviorCapability) -> bool { self.capabilities.contains(capabilities) } /// Check if the Behavior is able to trade pub fn can_trade(&self, alignment: Option, counterparty: Uid) -> bool { self.trading_behavior.can_trade(alignment, counterparty) } /// Set a state to the Behavior pub fn set(&mut self, state: BehaviorState) { self.state.set(state, true) } /// Unset a state to the Behavior pub fn unset(&mut self, state: BehaviorState) { self.state.set(state, false) } /// Check if the Behavior has a specific state pub fn is(&self, state: BehaviorState) -> bool { self.state.contains(state) } /// Get the trade site at which this behavior evaluates prices, if it does pub fn trade_site(&self) -> Option { if let TradingBehavior::RequireBalanced { trade_site } = self.trading_behavior { Some(trade_site) } else { None } } } #[derive(Clone, Debug, Default)] pub struct Psyche { /// The proportion of health below which entities will start fleeing. /// 0.0 = never flees, 1.0 = always flees, 0.5 = flee at 50% health. pub flee_health: f32, /// The distance below which the agent will see enemies if it has line of /// sight. pub sight_dist: f32, /// The distance below which the agent can hear enemies without seeing them. pub listen_dist: f32, /// The distance below which the agent will attack enemies. Should be lower /// than `sight_dist`. `None` implied that the agent is always aggro /// towards enemies that it is aware of. pub aggro_dist: Option, /// A factor that controls how much further an agent will wander when in the /// idle state. `1.0` is normal. pub idle_wander_factor: f32, /// Aggro range is multiplied by this factor. `1.0` is normal. /// /// This includes scaling the effective `sight_dist` and `listen_dist` /// when finding new targets to attack, adjusting the strength of /// wandering behavior in the idle state, and scaling `aggro_dist` in /// certain situations. pub aggro_range_multiplier: f32, } impl<'a> From<&'a Body> for Psyche { fn from(body: &'a Body) -> Self { Self { flee_health: match body { Body::Humanoid(humanoid) => match humanoid.species { humanoid::Species::Danari => 0.4, humanoid::Species::Dwarf => 0.3, humanoid::Species::Elf => 0.4, humanoid::Species::Human => 0.4, humanoid::Species::Orc => 0.3, humanoid::Species::Draugr => 0.3, }, Body::QuadrupedSmall(quadruped_small) => match quadruped_small.species { quadruped_small::Species::Pig => 0.5, quadruped_small::Species::Fox => 0.7, quadruped_small::Species::Sheep => 0.6, quadruped_small::Species::Boar => 0.1, quadruped_small::Species::Skunk => 0.4, quadruped_small::Species::Cat => 0.9, quadruped_small::Species::Batfox => 0.1, quadruped_small::Species::Raccoon => 0.6, quadruped_small::Species::Hyena => 0.2, quadruped_small::Species::Dog => 0.8, quadruped_small::Species::Rabbit => 0.7, quadruped_small::Species::Truffler => 0.2, quadruped_small::Species::Hare => 0.3, quadruped_small::Species::Goat => 0.5, quadruped_small::Species::Porcupine => 0.7, quadruped_small::Species::Turtle => 0.7, quadruped_small::Species::Beaver => 0.7, // FIXME: This is to balance for enemy rats in dungeons // Normal rats should probably always flee. quadruped_small::Species::Rat | quadruped_small::Species::TreantSapling | quadruped_small::Species::Holladon | quadruped_small::Species::Jackalope => 0.0, _ => 1.0, }, Body::QuadrupedMedium(quadruped_medium) => match quadruped_medium.species { quadruped_medium::Species::Frostfang => 0.1, quadruped_medium::Species::Catoblepas => 0.2, quadruped_medium::Species::Darkhound => 0.1, quadruped_medium::Species::Dreadhorn => 0.2, quadruped_medium::Species::Bonerattler => 0.0, quadruped_medium::Species::Tiger => 0.1, quadruped_medium::Species::Roshwalr => 0.0, _ => 0.3, }, Body::QuadrupedLow(quadruped_low) => match quadruped_low.species { quadruped_low::Species::Salamander | quadruped_low::Species::Elbst => 0.2, quadruped_low::Species::Monitor => 0.3, quadruped_low::Species::Pangolin => 0.6, quadruped_low::Species::Tortoise => 0.2, quadruped_low::Species::Rocksnapper => 0.05, quadruped_low::Species::Rootsnapper => 0.05, quadruped_low::Species::Reefsnapper => 0.05, quadruped_low::Species::Asp => 0.05, quadruped_low::Species::HermitAlligator => 0.0, _ => 0.0, }, Body::BipedSmall(biped_small) => match biped_small.species { biped_small::Species::Gnarling => 0.2, biped_small::Species::Adlet => 0.2, biped_small::Species::Haniwa => 0.1, biped_small::Species::Sahagin => 0.1, biped_small::Species::Myrmidon => 0.0, biped_small::Species::Husk | biped_small::Species::Boreal | biped_small::Species::Clockwork | biped_small::Species::Flamekeeper => 0.0, _ => 0.5, }, Body::BirdMedium(bird_medium) => match bird_medium.species { bird_medium::Species::SnowyOwl => 0.4, bird_medium::Species::HornedOwl => 0.4, bird_medium::Species::Duck => 0.6, bird_medium::Species::Cockatiel => 0.6, bird_medium::Species::Chicken => 0.5, bird_medium::Species::Bat => 0.1, bird_medium::Species::Penguin => 0.5, bird_medium::Species::Goose => 0.4, bird_medium::Species::Peacock => 0.3, bird_medium::Species::Eagle => 0.2, bird_medium::Species::Parrot => 0.8, bird_medium::Species::Crow => 0.4, bird_medium::Species::Dodo => 0.8, bird_medium::Species::Parakeet => 0.8, bird_medium::Species::Puffin => 0.8, bird_medium::Species::Toucan => 0.4, }, Body::BirdLarge(_) => 0.0, Body::FishSmall(_) => 1.0, Body::FishMedium(_) => 0.75, Body::BipedLarge(_) => 0.0, Body::Object(_) => 0.0, Body::ItemDrop(_) => 0.0, Body::Golem(_) => 0.0, Body::Theropod(_) => 0.0, Body::Ship(_) => 0.0, Body::Dragon(_) => 0.0, Body::Arthropod(arthropod) => match arthropod.species { arthropod::Species::Tarantula => 0.0, arthropod::Species::Blackwidow => 0.0, arthropod::Species::Antlion => 0.0, arthropod::Species::Hornbeetle => 0.1, arthropod::Species::Leafbeetle => 0.1, arthropod::Species::Stagbeetle => 0.1, arthropod::Species::Weevil => 0.0, arthropod::Species::Cavespider => 0.0, arthropod::Species::Moltencrawler => 0.2, arthropod::Species::Mosscrawler => 0.2, arthropod::Species::Sandcrawler => 0.2, arthropod::Species::Dagonite => 0.2, arthropod::Species::Emberfly => 0.1, }, Body::Crustacean(_) => 0.0, }, sight_dist: match body { Body::BirdLarge(_) => 250.0, Body::BipedLarge(biped_large) => match biped_large.species { biped_large::Species::Gigasfrost => 200.0, _ => 100.0, }, _ => 40.0, }, listen_dist: 30.0, aggro_dist: match body { Body::Humanoid(_) => Some(20.0), _ => None, // Always aggressive if detected }, idle_wander_factor: 1.0, aggro_range_multiplier: 1.0, } } } impl Psyche { /// The maximum distance that targets to attack might be detected by this /// agent. pub fn search_dist(&self) -> f32 { self.sight_dist.max(self.listen_dist) * self.aggro_range_multiplier } } #[derive(Clone, Debug)] /// Events that affect agent behavior from other entities/players/environment pub enum AgentEvent { /// Engage in conversation with entity with Uid Talk(Uid, Subject), TradeInvite(Uid), TradeAccepted(Uid), FinishedTrade(TradeResult), UpdatePendingTrade( // This data structure is large so box it to keep AgentEvent small Box<( TradeId, PendingTrade, SitePrices, [Option; 2], )>, ), ServerSound(Sound), Hurt, } #[derive(Copy, Clone, Debug)] pub struct Sound { pub kind: SoundKind, pub pos: Vec3, pub vol: f32, pub time: f64, } impl Sound { pub fn new(kind: SoundKind, pos: Vec3, vol: f32, time: f64) -> Self { Sound { kind, pos, vol, time, } } #[must_use] pub fn with_new_vol(mut self, new_vol: f32) -> Self { self.vol = new_vol; self } } #[derive(Copy, Clone, Debug)] pub enum SoundKind { Unknown, Utterance(UtteranceKind, Body), Movement, Melee, Projectile, Explosion, Beam, Shockwave, } #[derive(Clone, Copy, Debug)] pub struct Target { pub target: EcsEntity, /// Whether the target is hostile pub hostile: bool, /// The time at which the target was selected pub selected_at: f64, /// Whether the target has come close enough to trigger aggro. pub aggro_on: bool, pub last_known_pos: Option>, } impl Target { pub fn new( target: EcsEntity, hostile: bool, selected_at: f64, aggro_on: bool, last_known_pos: Option>, ) -> Self { Self { target, hostile, selected_at, aggro_on, last_known_pos, } } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, EnumIter)] pub enum TimerAction { Interact, } /// A time used for managing agent-related timeouts. The timer is designed to /// keep track of the start of any number of previous actions. However, /// starting/progressing an action will end previous actions. Therefore, the /// timer should be used for actions that are mutually-exclusive. #[derive(Clone, Debug)] pub struct Timer { action_starts: Vec>, last_action: Option, } impl Default for Timer { fn default() -> Self { Self { action_starts: TimerAction::iter().map(|_| None).collect(), last_action: None, } } } impl Timer { fn idx_for(action: TimerAction) -> usize { TimerAction::iter() .enumerate() .find(|(_, a)| a == &action) .unwrap() .0 // Can't fail, EnumIter is exhaustive } /// Reset the timer for the given action, returning true if the timer was /// not already reset. pub fn reset(&mut self, action: TimerAction) -> bool { self.action_starts[Self::idx_for(action)].take().is_some() } /// Start the timer for the given action, even if it was already started. pub fn start(&mut self, time: f64, action: TimerAction) { self.action_starts[Self::idx_for(action)] = Some(time); self.last_action = Some(action); } /// Continue timing the given action, starting it if it was not already /// started. pub fn progress(&mut self, time: f64, action: TimerAction) { if self.last_action != Some(action) { self.start(time, action); } } /// Return the time that the given action was last performed at. pub fn time_of_last(&self, action: TimerAction) -> Option { self.action_starts[Self::idx_for(action)] } /// Return `true` if the time since the action was last started exceeds the /// given timeout. pub fn time_since_exceeds(&self, time: f64, action: TimerAction, timeout: f64) -> bool { self.time_of_last(action) .map_or(true, |last_time| (time - last_time).max(0.0) > timeout) } /// Return `true` while the time since the action was last started is less /// than the given period. Once the time has elapsed, reset the timer. pub fn timeout_elapsed( &mut self, time: f64, action: TimerAction, timeout: f64, ) -> Option { if self.time_since_exceeds(time, action, timeout) { Some(self.reset(action)) } else { self.progress(time, action); None } } } /// For use with the builder pattern #[derive(Clone, Debug)] pub struct Agent { pub rtsim_controller: RtSimController, pub patrol_origin: Option>, pub target: Option, pub chaser: Chaser, pub behavior: Behavior, pub psyche: Psyche, pub inbox: VecDeque, pub combat_state: ActionState, pub behavior_state: ActionState, pub timer: Timer, pub bearing: Vec2, pub sounds_heard: Vec, pub position_pid_controller: Option, Vec3) -> f32, 16>>, /// Position from which to flee. Intended to be the agent's position plus a /// random position offset, to be used when a random flee direction is /// required and reset each time the flee timer is reset. pub flee_from_pos: Option, pub awareness: Awareness, pub stay_pos: Option, /// Inputs sent up to rtsim pub rtsim_outbox: Option>, } #[derive(Clone, Debug)] /// Always clamped between `0.0` and `1.0`. pub struct Awareness { level: f32, reached: bool, } impl fmt::Display for Awareness { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:.2}", self.level) } } impl Awareness { const ALERT: f32 = 1.0; const HIGH: f32 = 0.6; const LOW: f32 = 0.1; const MEDIUM: f32 = 0.3; const UNAWARE: f32 = 0.0; pub fn new(level: f32) -> Self { Self { level: level.clamp(Self::UNAWARE, Self::ALERT), reached: false, } } /// The level of awareness as a decimal. pub fn level(&self) -> f32 { self.level } /// The level of awareness in English. To see if awareness has been fully /// reached, use `self.reached()`. pub fn state(&self) -> AwarenessState { if self.level == Self::ALERT { AwarenessState::Alert } else if self.level.is_between(Self::HIGH, Self::ALERT) { AwarenessState::High } else if self.level.is_between(Self::MEDIUM, Self::HIGH) { AwarenessState::Medium } else if self.level.is_between(Self::LOW, Self::MEDIUM) { AwarenessState::Low } else { AwarenessState::Unaware } } /// Awareness was reached at some point and has not been reset. pub fn reached(&self) -> bool { self.reached } pub fn change_by(&mut self, amount: f32) { self.level = (self.level + amount).clamp(Self::UNAWARE, Self::ALERT); if self.state() == AwarenessState::Alert { self.reached = true; } else if self.state() == AwarenessState::Unaware { self.reached = false; } } pub fn set_maximally_aware(&mut self) { self.reached = true; self.level = Self::ALERT; } } #[derive(Clone, Debug, PartialOrd, PartialEq, Eq)] pub enum AwarenessState { Unaware = 0, Low = 1, Medium = 2, High = 3, Alert = 4, } /// State persistence object for the behavior tree /// Allows for state to be stored between subsequent, sequential calls of a /// single action node. If the executed action node changes between ticks, then /// the state should be considered lost. #[derive(Clone, Debug, Default)] pub struct ActionState { pub timers: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS], pub counters: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS], pub conditions: [bool; ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS], pub int_counters: [u8; ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS], pub positions: [Option>; ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS], pub initialized: bool, } impl Agent { /// Instantiates agent from body using the body's psyche pub fn from_body(body: &Body) -> Self { Agent { rtsim_controller: RtSimController::default(), patrol_origin: None, target: None, chaser: Chaser::default(), behavior: Behavior::default(), psyche: Psyche::from(body), inbox: VecDeque::new(), combat_state: ActionState::default(), behavior_state: ActionState::default(), timer: Timer::default(), bearing: Vec2::zero(), sounds_heard: Vec::new(), position_pid_controller: None, flee_from_pos: None, stay_pos: None, awareness: Awareness::new(0.0), rtsim_outbox: None, } } #[must_use] pub fn with_patrol_origin(mut self, origin: Vec3) -> Self { self.patrol_origin = Some(origin); self } #[must_use] pub fn with_behavior(mut self, behavior: Behavior) -> Self { self.behavior = behavior; self } #[must_use] pub fn with_no_flee_if(mut self, condition: bool) -> Self { if condition { self.psyche.flee_health = 0.0; } self } pub fn set_no_flee(&mut self) { self.psyche.flee_health = 0.0; } // FIXME: Only one of *three* things in this method sets a location. #[must_use] pub fn with_destination(mut self, pos: Vec3) -> Self { self.psyche.flee_health = 0.0; self.rtsim_controller = RtSimController::with_destination(pos); self.behavior.allow(BehaviorCapability::SPEAK); self } #[must_use] pub fn with_idle_wander_factor(mut self, idle_wander_factor: f32) -> Self { self.psyche.idle_wander_factor = idle_wander_factor; self } pub fn with_aggro_range_multiplier(mut self, aggro_range_multiplier: f32) -> Self { self.psyche.aggro_range_multiplier = aggro_range_multiplier; self } #[must_use] pub fn with_position_pid_controller( mut self, pid: PidController, Vec3) -> f32, 16>, ) -> Self { self.position_pid_controller = Some(pid); self } /// Makes agent aggressive without warning #[must_use] pub fn with_aggro_no_warn(mut self) -> Self { self.psyche.aggro_dist = None; self } pub fn forget_old_sounds(&mut self, time: f64) { if !self.sounds_heard.is_empty() { // Keep (retain) only newer sounds self.sounds_heard .retain(|&sound| time - sound.time <= SECONDS_BEFORE_FORGET_SOUNDS); } } pub fn allowed_to_speak(&self) -> bool { self.behavior.can(BehaviorCapability::SPEAK) } } impl Component for Agent { type Storage = specs::DenseVecStorage; } #[cfg(test)] mod tests { use super::{humanoid, Agent, Behavior, BehaviorCapability, BehaviorState, Body}; /// Test to verify that Behavior is working correctly at its most basic /// usages #[test] pub fn behavior_basic() { let mut b = Behavior::default(); // test capabilities assert!(!b.can(BehaviorCapability::SPEAK)); b.allow(BehaviorCapability::SPEAK); assert!(b.can(BehaviorCapability::SPEAK)); b.deny(BehaviorCapability::SPEAK); assert!(!b.can(BehaviorCapability::SPEAK)); // test states assert!(!b.is(BehaviorState::TRADING)); b.set(BehaviorState::TRADING); assert!(b.is(BehaviorState::TRADING)); b.unset(BehaviorState::TRADING); assert!(!b.is(BehaviorState::TRADING)); // test `from` let b = Behavior::from(BehaviorCapability::SPEAK); assert!(b.can(BehaviorCapability::SPEAK)); } /// Makes agent flee #[test] pub fn enable_flee() { let body = Body::Humanoid(humanoid::Body::random()); let mut agent = Agent::from_body(&body); agent.psyche.flee_health = 1.0; agent = agent.with_no_flee_if(false); assert_eq!(agent.psyche.flee_health, 1.0); } /// Makes agent not flee #[test] pub fn set_no_flee() { let body = Body::Humanoid(humanoid::Body::random()); let mut agent = Agent::from_body(&body); agent.psyche.flee_health = 1.0; agent.set_no_flee(); assert_eq!(agent.psyche.flee_health, 0.0); } #[test] pub fn with_aggro_no_warn() { let body = Body::Humanoid(humanoid::Body::random()); let mut agent = Agent::from_body(&body); agent.psyche.aggro_dist = Some(1.0); agent = agent.with_aggro_no_warn(); assert_eq!(agent.psyche.aggro_dist, None); } } /// PID controllers are used for automatically adapting nonlinear controls (like /// buoyancy for airships) to target specific outcomes (i.e. a specific height) #[derive(Clone)] pub struct PidController, Vec3) -> f32, const NUM_SAMPLES: usize> { /// The coefficient of the proportional term pub kp: f32, /// The coefficient of the integral term pub ki: f32, /// The coefficient of the derivative term pub kd: f32, /// The setpoint that the process has as its goal pub sp: Vec3, /// A ring buffer of the last NUM_SAMPLES measured process variables pv_samples: [(f64, Vec3); NUM_SAMPLES], /// The index into the ring buffer of process variables pv_idx: usize, /// The total integral error integral_error: f64, /// The error function, to change how the difference between the setpoint /// and process variables are calculated e: F, } impl, Vec3) -> f32, const NUM_SAMPLES: usize> fmt::Debug for PidController { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("PidController") .field("kp", &self.kp) .field("ki", &self.ki) .field("kd", &self.kd) .field("sp", &self.sp) .field("pv_samples", &self.pv_samples) .field("pv_idx", &self.pv_idx) .finish() } } impl, Vec3) -> f32, const NUM_SAMPLES: usize> PidController { /// Constructs a PidController with the specified weights, setpoint, /// starting time, and error function pub fn new(kp: f32, ki: f32, kd: f32, sp: Vec3, time: f64, e: F) -> Self { Self { kp, ki, kd, sp, pv_samples: [(time, sp); NUM_SAMPLES], pv_idx: 0, integral_error: 0.0, e, } } /// Adds a measurement of the process variable to the ringbuffer pub fn add_measurement(&mut self, time: f64, pv: Vec3) { self.pv_idx += 1; self.pv_idx %= NUM_SAMPLES; self.pv_samples[self.pv_idx] = (time, pv); self.update_integral_err(); } /// The amount to set the control variable to is a weighed sum of the /// proportional error, the integral error, and the derivative error. /// https://en.wikipedia.org/wiki/PID_controller#Mathematical_form pub fn calc_err(&self) -> f32 { self.kp * self.proportional_err() + self.ki * self.integral_err() + self.kd * self.derivative_err() } /// The proportional error is the error function applied to the set point /// and the most recent process variable measurement pub fn proportional_err(&self) -> f32 { (self.e)(self.sp, self.pv_samples[self.pv_idx].1) } /// The integral error is the error function integrated over all previous /// values, updated per point. The trapezoid rule for numerical integration /// was chosen because it's fairly easy to calculate and sufficiently /// accurate. https://en.wikipedia.org/wiki/Trapezoidal_rule#Uniform_grid pub fn integral_err(&self) -> f32 { self.integral_error as f32 } fn update_integral_err(&mut self) { let f = |x| (self.e)(self.sp, x) as f64; let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES]; let (b, x1) = self.pv_samples[self.pv_idx]; let dx = b - a; // Discard updates with too long between them, likely caused by either // initialization or latency, since they're likely to be spurious if dx < 5.0 { self.integral_error += dx * (f(x1) + f(x0)) / 2.0; } } /// The derivative error is the numerical derivative of the error function /// based on the most recent 2 samples. Using more than 2 samples might /// improve the accuracy of the estimate of the derivative, but it would be /// an estimate of the derivative error further in the past. /// https://en.wikipedia.org/wiki/Numerical_differentiation#Finite_differences pub fn derivative_err(&self) -> f32 { let f = |x| (self.e)(self.sp, x); let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES]; let (b, x1) = self.pv_samples[self.pv_idx]; let h = b - a; (f(x1) - f(x0)) / h as f32 } } /// Get the PID coefficients associated with some Body, since it will likely /// need to be tuned differently for each body type pub fn pid_coefficients(body: &Body) -> Option<(f32, f32, f32)> { // A pure-proportional controller is { kp: 1.0, ki: 0.0, kd: 0.0 } match body { Body::Ship(ship::Body::DefaultAirship) => { let kp = 1.0; let ki = 0.1; let kd = 1.2; Some((kp, ki, kd)) }, Body::Ship(ship::Body::AirBalloon) => { let kp = 1.0; let ki = 0.1; let kd = 0.8; Some((kp, ki, kd)) }, _ => None, } }