#ifndef SKY_GLSL #define SKY_GLSL #include #include #include #include // Information about an approximately directional light, like the sun or moon. struct DirectionalLight { // vec3 dir; float shadow; // Fully blocks all light, including ambience float block; // vec3 color; // float brightness; }; const float PI = 3.141592; const vec3 SKY_DAY_TOP = vec3(0.1, 0.5, 0.9); const vec3 SKY_DAY_MID = vec3(0.02, 0.28, 0.8); const vec3 SKY_DAY_BOT = vec3(0.1, 0.2, 0.3); const vec3 DAY_LIGHT = vec3(3.8, 3.0, 1.8); const vec3 SUN_HALO_DAY = vec3(0.25, 0.25, 0.001); const vec3 SKY_DUSK_TOP = vec3(0.06, 0.1, 0.20); const vec3 SKY_DUSK_MID = vec3(0.75, 0.1, 0.15); const vec3 SKY_DUSK_BOT = vec3(0.0, 0.1, 0.23); const vec3 DUSK_LIGHT = vec3(8.0, 1.5, 0.15); const vec3 SUN_HALO_DUSK = vec3(10.2, 3.0, 0.1); const vec3 SKY_NIGHT_TOP = vec3(0.001, 0.001, 0.0025); const vec3 SKY_NIGHT_MID = vec3(0.001, 0.005, 0.02); const vec3 SKY_NIGHT_BOT = vec3(0.002, 0.004, 0.004); const vec3 NIGHT_LIGHT = vec3(5.0, 0.75, 0.2); // const vec3 NIGHT_LIGHT = vec3(0.0, 0.0, 0.0); // Linear RGB, scattering coefficients for atmosphere at roughly R, G, B wavelengths. // // See https://en.wikipedia.org/wiki/Diffuse_sky_radiation const vec3 MU_SCATTER = vec3(0.05, 0.10, 0.23) * 1.5; const float SUN_COLOR_FACTOR = 5.0;//6.0;// * 1.5;//1.8; const float UNDERWATER_MIST_DIST = 100.0; const float PERSISTENT_AMBIANCE = 1.0 / 32.0;// 1.0 / 80; // 1.0 / 512; // 0.00125 // 0.1;// 0.025; // 0.1; // Glow from static light sources // Allowed to be > 1 due to HDR const vec3 GLOW_COLOR = vec3(3.0, 0.9, 0.05); // Calculate glow from static light sources, + some noise for flickering. // TODO: Optionally disable the flickering for performance? vec3 glow_light(vec3 pos) { return GLOW_COLOR * (1.0 + (noise_3d(vec3(pos.xy * 0.005, tick.x * 0.5)) - 0.5) * 1.0); } //vec3 get_sun_dir(float time_of_day) { // const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); // // float sun_angle_rad = time_of_day * TIME_FACTOR; // // return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); // return vec3(sin(sun_angle_rad), 0.0, cos(sun_angle_rad)); //} // //vec3 get_moon_dir(float time_of_day) { // const float TIME_FACTOR = (PI * 2.0) / (3600.0 * 24.0); // // float moon_angle_rad = time_of_day * TIME_FACTOR; // // -cos((60+60*4)/360*2*pi)-0.5 = 0 // // -cos((60+60*5)/360*2*pi)-0.5 = -0.5 // // -cos((60+60*6)/360*2*pi)-0.5 = 0 // // // // i.e. moon out from (60*5)/360*24 = 20:00 to (60*7/360*24) = 28:00 = 04:00. // // // // Then sun out from 04:00 to 20:00. // return normalize(-vec3(sin(moon_angle_rad), 0.0, cos(moon_angle_rad) - 0.5)); //} float CLOUD_AVG_ALT = view_distance.z + (view_distance.w - view_distance.z) * 1.25; const float wind_speed = 0.25; vec2 wind_offset = vec2(time_of_day.x * wind_speed); float cloud_scale = view_distance.z / 150.0; float cloud_tendency_at(vec2 pos) { float nz = textureLod(sampler2D(t_noise, s_noise), (pos + wind_offset) / 60000.0 / cloud_scale, 0).x - 0.3; nz = pow(clamp(nz, 0, 1), 3); return nz; } float cloud_shadow(vec3 pos, vec3 light_dir) { #if (CLOUD_MODE <= CLOUD_MODE_MINIMAL) return 1.0; #else vec2 xy_offset = light_dir.xy * ((CLOUD_AVG_ALT - pos.z) / -light_dir.z); // Fade out shadow if the sun angle is too steep (simulates a widening penumbra with distance) const vec2 FADE_RANGE = vec2(1500, 10000); float fade = 1.0 - clamp((length(xy_offset) - FADE_RANGE.x) / (FADE_RANGE.y - FADE_RANGE.x), 0, 1); float cloud = cloud_tendency_at(pos.xy + focus_off.xy - xy_offset); return clamp(1 - fade * cloud * 16.0, 0, 1); #endif } float get_sun_brightness(/*vec3 sun_dir*/) { return max(-sun_dir.z + 0.5, 0.0); } float get_moon_brightness(/*vec3 moon_dir*/) { return max(-moon_dir.z + 0.6, 0.0) * 0.05; } vec3 get_sun_color(/*vec3 sun_dir*/) { return mix( mix( DUSK_LIGHT, NIGHT_LIGHT, max(sun_dir.z, 0) ), DAY_LIGHT, max(-sun_dir.z, 0) ); } // Average sky colour (i.e: perfectly scattered light from the sky) vec3 get_sky_color(/*vec3 sun_dir*/) { return mix( mix( (SKY_DUSK_TOP + SKY_DUSK_MID) / 2, (SKY_NIGHT_TOP + SKY_NIGHT_MID) / 2, max(sun_dir.z, 0) ), (SKY_DAY_TOP + SKY_DAY_MID) / 2, max(-sun_dir.z, 0) ); } vec3 get_moon_color(/*vec3 moon_dir*/) { return vec3(0.05, 0.05, 1.6); } DirectionalLight get_sun_info(vec4 _dir, float shade_frac/*, vec4 light_pos[2]*/, /*vec4 sun_pos*/vec3 f_pos) { float shadow = shade_frac; float block = 1.0; #ifdef HAS_SHADOW_MAPS #if (SHADOW_MODE == SHADOW_MODE_MAP) if (sun_dir.z < /*0.6*/0.0) { /* ShadowLocals sun_shadow = shadowMats[0]; vec4 sun_pos = sun_shadow.texture_mat * vec4(f_pos, 1.0); */ // #if (SHADOW_MODE == SHADOW_MODE_MAP) // // for (uint i = 0u; i < light_shadow_count.z; ++i) { // // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/; // // } // #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // vec4 sun_pos = vec4(0.0); // #endif shadow = min(shadow, ShadowCalculationDirected(/*sun_pos, *//*0u*/f_pos)); } #endif #endif return DirectionalLight(/*dir, */shadow, block/*, get_sun_color(dir), get_sun_brightness(dir)*/); } DirectionalLight get_moon_info(vec4 _dir, float shade_frac/*, vec4 light_pos[2]*/) { float shadow = shade_frac; float block = 1.0; // #ifdef HAS_SHADOW_MAPS // shadow = min(shade_frac, ShadowCalculationDirected(light_pos, 1u)); // #endif return DirectionalLight(/*dir, */shadow, block/*, get_moon_color(dir), get_moon_brightness(dir)*/); } // // Calculates extra emission and reflectance (due to sunlight / moonlight). // // // // reflectence = k_a * i_a + i_a,persistent // // emittence = Σ { m ∈ lights } i_m * shadow_m * get_light_reflected(light_m) // // // // Note that any shadowing to be done that would block the sun and moon, aside from heightmap shadowing (that will be // // implemented sooon), should be implicitly provided via k_a, k_d, and k_s. For instance, shadowing via ambient occlusion. // // // // Also note that the emitted light calculation is kind of lame... we probabbly need something a bit nicer if we ever want to do // // anything interesting here. // // void get_sun_diffuse(vec3 norm, float time_of_day, out vec3 light, out vec3 diffuse_light, out vec3 ambient_light, float diffusion // void get_sun_diffuse(vec3 norm, float time_of_day, vec3 dir, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, out vec3 emitted_light, out vec3 reflected_light) { // const float SUN_AMBIANCE = 0.1 / 2.0;// 0.1 / 3.0; // // vec3 sun_dir = get_sun_dir(time_of_day); // vec3 moon_dir = get_moon_dir(time_of_day); // // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); // // vec3 sun_color = get_sun_color(sun_dir); // vec3 moon_color = get_moon_color(moon_dir); // // vec3 sun_chroma = sun_color * sun_light; // vec3 moon_chroma = moon_color * moon_light; // // /* float NLsun = max(dot(-norm, sun_dir), 0); // float NLmoon = max(dot(-norm, moon_dir), 0); // vec3 E = -dir; */ // // // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5); // // float ambient_sides = 0.5 - 0.5 * abs(dot(-norm, sun_dir)); // // emitted_light = k_a * (ambient_sides + vec3(SUN_AMBIANCE * sun_light + moon_light)) + PERSISTENT_AMBIANCE; // // TODO: Add shadows. // reflected_light = // sun_chroma * light_reflection_factor(norm, dir, sun_dir, k_d, k_s, alpha) + // moon_chroma * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha); // // /* light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE; // diffuse_light = // sun_chroma * mix(1.0, max(dot(-norm, sun_dir) * 0.5 + 0.5, 0.0), diffusion) + // moon_chroma * mix(1.0, pow(dot(-norm, moon_dir) * 2.0, 2.0), diffusion) + // PERSISTENT_AMBIANCE; // ambient_light = vec3(SUN_AMBIANCE * sun_light + moon_light); */ // } // Returns computed maximum intensity. // // wpos is the position of this fragment. // mu is the attenuation coefficient for any substance on a horizontal plane. // cam_attenuation is the total light attenuation due to the substance for beams between the point and the camera. // surface_alt is the altitude of the attenuating surface. float get_sun_diffuse2(DirectionalLight sun_info, DirectionalLight moon_info, vec3 norm, vec3 dir, vec3 wpos, vec3 mu, vec3 cam_attenuation, float surface_alt, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, vec3 voxel_norm, float voxel_lighting, out vec3 emitted_light, out vec3 reflected_light) { const float MIN_SHADOW = 0.15; const vec3 SUN_AMBIANCE = MU_SCATTER;//0.23;/* / 1.8*/;// 0.1 / 3.0; const vec3 MOON_AMBIANCE = MU_SCATTER;//0.23;//0.1; /* vec3 sun_dir = sun_info.dir; vec3 moon_dir = moon_info.dir; */ vec3 sun_dir = sun_dir.xyz; vec3 moon_dir = moon_dir.xyz; float sun_light = get_sun_brightness(/*sun_dir*/) * sun_info.block;//sun_info.brightness;; float moon_light = get_moon_brightness(/*moon_dir*/) * moon_info.block;//moon_info.brightness; vec3 sun_color = get_sun_color(/*sun_dir*/) * SUN_COLOR_FACTOR;//sun_info.color * SUN_COLOR_FACTOR; vec3 moon_color = get_moon_color(/*moon_dir*/);//moon_info.color; // If the sun is facing the wrong way, we currently just want zero light, hence default point is wpos. vec3 sun_attenuation = compute_attenuation(wpos, -sun_dir, mu, surface_alt, wpos); vec3 moon_attenuation = compute_attenuation(wpos, -moon_dir, mu, surface_alt, wpos); vec3 sun_chroma = sun_color * sun_light * cam_attenuation * sun_attenuation; vec3 moon_chroma = moon_color * moon_light * cam_attenuation * moon_attenuation; // #ifdef HAS_SHADOW_MAPS // float sun_shadow = ShadowCalculationDirected(light_pos, 0u); // float moon_shadow = ShadowCalculationDirected(light_pos, 1u); // #else // float sun_shadow = 1.0; // float moon_shadow = 1.0; // #endif float sun_shadow = sun_info.shadow * cloud_shadow(wpos, sun_dir); float moon_shadow = moon_info.shadow * cloud_shadow(wpos, moon_dir); // https://en.m.wikipedia.org/wiki/Diffuse_sky_radiation // // HdRd radiation should come in at angle normal to us. // const float H_d = 0.23; // // Let β be the angle from horizontal // (for objects exposed to the sky, where positive when sloping towards south and negative when sloping towards north): // // sin β = (north ⋅ norm) / |north||norm| // = dot(vec3(0, 1, 0), norm) // // cos β = sqrt(1.0 - dot(vec3(0, 1, 0), norm)) // // Let h be the hour angle (180/0.0 at midnight, 90/1.0 at dawn, 0/0.0 at noon, -90/-1.0 at dusk, -180 at midnight/0.0): // cos h = (midnight ⋅ -light_dir) / |midnight||-light_dir| // = (noon ⋅ light_dir) / |noon||light_dir| // = dot(vec3(0, 0, 1), light_dir) // // Let φ be the latitude at this point. 0 at equator, -90 at south pole / 90 at north pole. // // Let δ be the solar declination (angular distance of the sun's rays north [or south[] // of the equator), i.e. the angle made by the line joining the centers of the sun and Earth with its projection on the // equatorial plane. Caused by axial tilt, and 0 at equinoxes. Normally varies between -23.45 and 23.45 degrees. // // Let α (the solar altitude / altitud3 angle) be the vertical angle between the projection of the sun's rays on the // horizontal plane and the direction of the sun's rays (passing through a point). // // Let Θ_z be the vertical angle between sun's rays and a line perpendicular to the horizontal plane through a point, // i.e. // // Θ_z = (π/2) - α // // i.e. cos Θ_z = sin α and // cos α = sin Θ_z // // Let γ_s be the horizontal angle measured from north to the horizontal projection of the sun's rays (positive when // measured westwise). // // cos Θ_z = cos φ cos h cos δ + sin φ sin δ // cos γ_s = sec α (cos φ sin δ - cos δ sin φ cos h) // = (1 / √(1 - cos² Θ_z)) (cos φ sin δ - cos δ sin φ cos h) // sin γ_s = sec α cos δ sin h // = (1 / cos α) cos δ sin h // = (1 / sin Θ_z) cos δ sin h // = (1 / √(1 - cos² Θ_z)) cos δ sin h // // R_b = (sin(δ)sin(φ - β) + cos(δ)cos(h)cos(φ - β))/(sin(δ)sin(φ) + cos(δ)cos(h)cos(φ)) // // Assuming we are on the equator (i.e. φ = 0), and there is no axial tilt or we are at an equinox (i.e. δ = 0): // // cos Θ_z = 1 * cos h * 1 + 0 * 0 = cos h // cos γ_s = (1 / √(1 - cos² h)) (1 * 0 - 1 * 0 * cos h) // = (1 / √(1 - cos² h)) * 0 // = 0 // sin γ_s = (1 / √(1 - cos² h)) * sin h // = sin h / sin h // = 1 // // R_b = (0 * sin(0 - β) + 1 * cos(h) * cos(0 - β))/(0 * 0 + 1 * cos(h) * 1) // = (cos(h)cos(-β)) / cos(H) // = cos(-β), the angle from horizontal. // // NOTE: cos(-β) = cos(β). // float cos_sun = dot(norm, /*-sun_dir*/vec3(0, 0, 1)); // float cos_moon = dot(norm, -moon_dir); // // Let ζ = diffuse reflectance of surrounding ground for solar radiation, then we have // // R_d = (1 + cos β) / 2 // R_r = ζ (1 - cos β) / 2 // // H_t = H_b R_b + H_d R_d + (H_b + H_d) R_r float sin_beta = dot(vec3(0, 1, 0), norm); float R_b = sqrt(1.0 - sin_beta * sin_beta); // Rough estimate of diffuse reflectance of rest of ground. // NOTE: zeta should be close to 0.7 with snow cover, 0.2 normally? Maybe? vec3 zeta = max(vec3(0.2), k_d * (1.0 - k_s));//vec3(0.2);// k_d * (1.0 - k_s); float R_d = (1 + R_b) * 0.5; vec3 R_r = zeta * (1.0 - R_b) * 0.5; // // We can break this down into: // H_t_b = H_b * (R_b + R_r) = light_intensity * (R_b + R_r) // H_t_r = H_d * (R_d + R_r) = light_intensity * (R_d + R_r) vec3 R_t_b = R_b + R_r; vec3 R_t_r = R_d + R_r; // vec3 half_vec = normalize(-norm + dir); vec3 light_frac = R_t_b * (sun_chroma * SUN_AMBIANCE + moon_chroma * MOON_AMBIANCE) * light_reflection_factor(norm, /*norm*//*dir*/dir, /*-norm*/-/*dir*/norm, /*k_d*/k_d/* * (1.0 - k_s)*/, /*k_s*/vec3(0.0), alpha, voxel_norm, voxel_lighting); // vec3 light_frac = /*vec3(1.0)*//*H_d * */ // SUN_AMBIANCE * /*sun_light*/sun_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_sun) * 0.5), vec3(k_s * (1.0 - cos_sun) * 0.5), alpha) + // MOON_AMBIANCE * /*sun_light*/moon_chroma * light_reflection_factor(norm, dir, /*vec3(0, 0, -1.0)*/-norm, vec3((1.0 + cos_moon) * 0.5), vec3(k_s * (1.0 - cos_moon) * 0.5), alpha); /* float NLsun = max(dot(-norm, sun_dir), 0); float NLmoon = max(dot(-norm, moon_dir), 0); vec3 E = -dir; */ // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = 0.0; // float ambient_sides = 0.5 - 0.5 * min(abs(dot(-norm, sun_dir)), abs(dot(-norm, moon_dir))); // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5); // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-norm, sun_dir)) * mix(0.0, 1.0, abs(sun_dir.z) * 10000.0) * 10000.0), 0.0, 0.5); emitted_light = light_frac + k_a * PERSISTENT_AMBIANCE * ambiance * 0.1 * MU_SCATTER; // emitted_light = k_a * light_frac * (/*ambient_sides + */SUN_AMBIANCE * /*sun_light*/sun_chroma + /*vec3(moon_light)*/MOON_AMBIANCE * moon_chroma) + PERSISTENT_AMBIANCE; reflected_light = R_t_r * ( (1.0 - SUN_AMBIANCE) * sun_chroma * sun_shadow * (light_reflection_factor(norm, dir, sun_dir, k_d, k_s, alpha, voxel_norm, voxel_lighting) /*+ light_reflection_factor(norm, dir, normalize(sun_dir + vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha) + light_reflection_factor(norm, dir, normalize(sun_dir - vec3(0.0, 0.1, 0.0)), k_d, k_s, alpha)*/) + (1.0 - MOON_AMBIANCE) * moon_chroma * moon_shadow * 1.0 * /*4.0 * */light_reflection_factor(norm, dir, moon_dir, k_d, k_s, alpha, voxel_norm, voxel_lighting) ); /* light = sun_chroma + moon_chroma + PERSISTENT_AMBIANCE; diffuse_light = sun_chroma * mix(1.0, max(dot(-norm, sun_dir) * 0.5 + 0.5, 0.0), diffusion) + moon_chroma * mix(1.0, pow(dot(-norm, moon_dir) * 2.0, 2.0), diffusion) + PERSISTENT_AMBIANCE; ambient_light = vec3(SUN_AMBIANCE * sun_light + moon_light); */ return rel_luminance(emitted_light + reflected_light);//rel_luminance(emitted_light + reflected_light);//sun_chroma + moon_chroma + PERSISTENT_AMBIANCE; } float get_sun_diffuse2(DirectionalLight sun_info, DirectionalLight moon_info, vec3 norm, vec3 dir, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, vec3 voxel_norm, float voxel_lighting, out vec3 emitted_light, out vec3 reflected_light) { return get_sun_diffuse2(sun_info, moon_info, norm, dir, vec3(0.0), vec3(0.0), vec3(1.0), 0.0, k_a, k_d, k_s, alpha, voxel_norm, voxel_lighting, emitted_light, reflected_light); } float get_sun_diffuse2(DirectionalLight sun_info, DirectionalLight moon_info, vec3 norm, vec3 dir, vec3 k_a, vec3 k_d, vec3 k_s, float alpha, out vec3 emitted_light, out vec3 reflected_light) { return get_sun_diffuse2(sun_info, moon_info, norm, dir, vec3(0.0), vec3(0.0), vec3(1.0), 0.0, k_a, k_d, k_s, alpha, norm, 1.0, emitted_light, reflected_light); } // This has been extracted into a function to allow quick exit when detecting a star. float is_star_at(vec3 dir) { float star_scale = 80.0; // Star positions vec3 pos = (floor(dir * star_scale) - 0.5) / star_scale; // Noisy offsets pos += (3.0 / star_scale) * (1.0 + hash(pos.yxzz) * 0.85); // Find distance to fragment float dist = length(pos - dir); // Star threshold //if (dist < 0.0015) { // return 2.5; //} //return 0.0; return 5.0 / (1.0 + pow(dist * 750, 8)); } vec3 get_sky_light(vec3 dir, float time_of_day, bool with_stars) { // Add white dots for stars. Note these flicker and jump due to FXAA float star = 0.0; if (with_stars) { vec3 star_dir = normalize(sun_dir.xyz * dir.z + cross(sun_dir.xyz, vec3(0, 1, 0)) * dir.x + vec3(0, 1, 0) * dir.y); star = is_star_at(star_dir); } vec3 sky_top = mix( mix( SKY_DUSK_TOP, SKY_NIGHT_TOP, max(pow(sun_dir.z, 0.2), 0) ) + star, SKY_DAY_TOP, max(-sun_dir.z, 0) ); vec3 sky_mid = mix( mix( SKY_DUSK_MID, SKY_NIGHT_MID, max(pow(sun_dir.z, 0.1), 0) ), SKY_DAY_MID, max(-sun_dir.z, 0) ); vec3 sky_bot = mix( mix( SKY_DUSK_BOT, SKY_NIGHT_BOT, max(pow(sun_dir.z, 0.2), 0) ), SKY_DAY_BOT, max(-sun_dir.z, 0) ); vec3 sky_color = mix( mix( sky_mid, sky_bot, max(-dir.z, 0) ), sky_top, max(dir.z, 0) ); return sky_color; } vec3 get_sky_color(vec3 dir, float time_of_day, vec3 origin, vec3 f_pos, float quality, bool with_features, float refractionIndex) { // Sky color /* vec3 sun_dir = get_sun_dir(time_of_day); vec3 moon_dir = get_moon_dir(time_of_day); */ vec3 sun_dir = sun_dir.xyz; vec3 moon_dir = moon_dir.xyz; // sun_dir = sun_dir.z <= 0 ? refract(sun_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), refractionIndex) : sun_dir; // moon_dir = moon_dir.z <= 0 ? refract(moon_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), refractionIndex) : moon_dir; // Sun const vec3 SUN_SURF_COLOR = vec3(1.5, 0.9, 0.35) * 50.0; vec3 sun_halo_color = mix( SUN_HALO_DUSK, SUN_HALO_DAY, pow(max(-sun_dir.z, 0.0), 0.5) ); vec3 sun_halo = sun_halo_color * 25 * pow(max(dot(dir, -sun_dir), 0), 20.0); vec3 sun_surf = vec3(0); if (with_features) { float angle = 0.00035; sun_surf = clamp((dot(dir, -sun_dir) - (1.0 - angle)) * 4 / angle, 0, 1) * SUN_SURF_COLOR * SUN_COLOR_FACTOR; } vec3 sun_light = sun_halo + sun_surf; // Moon const vec3 MOON_SURF_COLOR = vec3(0.7, 1.0, 1.5) * 250.0; const vec3 MOON_HALO_COLOR = vec3(0.015, 0.015, 0.05) * 250; vec3 moon_halo_color = MOON_HALO_COLOR; vec3 moon_halo = moon_halo_color * pow(max(dot(dir, -moon_dir), 0), 100.0); vec3 moon_surf = vec3(0); if (with_features) { float angle = 0.00035; moon_surf = clamp((dot(dir, -moon_dir) - (1.0 - angle)) * 4 / angle, 0, 1) * MOON_SURF_COLOR; } vec3 moon_light = moon_halo + moon_surf; // Replaced all clamp(sun_dir, 0, 1) with max(sun_dir, 0) because sun_dir is calculated from sin and cos, which are never > 1 #if (CLOUD_MODE == CLOUD_MODE_NONE) vec3 sky_color = get_sky_light(dir, time_of_day, true); #else vec3 star_dir = normalize(sun_dir.xyz * dir.z + cross(sun_dir.xyz, vec3(0, 1, 0)) * dir.x + vec3(0, 1, 0) * dir.y); float star = is_star_at(star_dir); vec3 sky_color = vec3(0) + star; #endif return sky_color + sun_light + moon_light; } vec3 get_sky_color(vec3 dir, float time_of_day, vec3 origin, vec3 f_pos, float quality, bool with_stars) { return get_sky_color(dir, time_of_day, origin, f_pos, quality, with_stars, 1.0); } float fog(vec3 f_pos, vec3 focus_pos, uint medium) { return max(1.0 - 5000.0 / (1.0 + distance(f_pos.xy, focus_pos.xy)), 0.0); // float fog_radius = view_distance.x; // float mist_radius = 10000000.0; // float min_fog = 0.5; // float max_fog = 1.0; // if (medium == 1u) { // mist_radius = UNDERWATER_MIST_DIST; // min_fog = 0.0; // } // float fog = distance(f_pos.xy, focus_pos.xy) / fog_radius; // float mist = distance(f_pos, focus_pos) / mist_radius; // return pow(clamp((max(fog, mist) - min_fog) / (max_fog - min_fog), 0.0, 1.0), 1.7); } /* vec3 illuminate(vec3 color, vec3 light, vec3 diffuse, vec3 ambience) { float avg_col = (color.r + color.g + color.b) / 3.0; return ((color - avg_col) * light + (diffuse + ambience) * avg_col) * (diffuse + ambience); } */ vec3 illuminate(float max_light, vec3 view_dir, /*vec3 max_light, */vec3 emitted, vec3 reflected) { return emitted + reflected; // const float NIGHT_EXPOSURE = 10.0; // const float DUSK_EXPOSURE = 2.0;//0.8; // const float DAY_EXPOSURE = 1.0;//0.7; // #if (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_ASHIKHMIN) // const float DAY_SATURATION = 1.1; // #else // const float DAY_SATURATION = 1.0; // #endif // const float DUSK_SATURATION = 0.6; // const float NIGHT_SATURATION = 0.1; // const float gamma = /*0.5*//*1.*0*/1.0;//1.0; /* float light = length(emitted + reflected); float color = srgb_to_linear(emitted + reflected); float avg_col = (color.r + color.g + color.b) / 3.0; return ((color - avg_col) * light + reflected * avg_col) * (emitted + reflected); */ // float max_intensity = vec3(1.0); // vec3 color = emitted + reflected; // float lum = rel_luminance(color); // float lum_sky = lum - max_light; /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ // float sky_light = rel_luminance( // get_sun_color(/*sun_dir*/) * get_sun_brightness(/*sun_dir*/) * SUN_COLOR_FACTOR + // get_moon_color(/*moon_dir*/) * get_moon_brightness(/*moon_dir*/)); // Tone mapped value. // vec3 T = /*color*//*lum*/color;//normalize(color) * lum / (1.0 + lum); // float alpha = 0.5;//2.0; // float alpha = mix( // mix( // DUSK_EXPOSURE, // NIGHT_EXPOSURE, // max(sun_dir.z, 0) // ), // DAY_EXPOSURE, // max(-sun_dir.z, 0) // ); // vec3 now_light = moon_dir.z < 0 ? moon_dir.xyz : sun_dir.xyz; // float cos_view_light = dot(-now_light, view_dir); // alpha *= exp(1.0 - cos_view_light); // sky_light *= 1.0 - log(1.0 + view_dir.z); // float alph = sky_light > 0.0 && max_light > 0.0 ? mix(1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light / (0.0 + sky_light)), 1.0, clamp(max_light - sky_light, 0.0, 1.0)) : 1.0; // alpha = alpha * min(alph, 1.0);//((max_light > 0.0 && max_light > sky_light /* && sky_light > 0.0*/) ? /*1.0*/1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light - (0.0 + sky_light)) : 1.0); // alpha = alpha * min(1.0, (max_light == 0.0 ? 1.0 : (1.0 + abs(lum_sky)) / /*(1.0 + max_light)*/max_light)); // vec3 col_adjusted = lum == 0.0 ? vec3(0.0) : color / lum; // float L = lum == 0.0 ? 0.0 : log(lum); // // float B = T; // // float B = L + log(alpha); // float B = lum; // float D = L - B; // float o = 0.0;//log(PERSISTENT_AMBIANCE); // float scale = /*-alpha*/-alpha;//1.0; // float B_ = (B - o) * scale; // // float T = lum; // float O = exp(B_ + D); // float T = 1.0 - exp(-alpha * lum);//lum / (1.0 + lum); // float T = lum; // Heuristic desaturation // const float s = 0.8; // float s = mix( // mix( // DUSK_SATURATION, // NIGHT_SATURATION, // max(sun_dir.z, 0) // ), // DAY_SATURATION, // max(-sun_dir.z, 0) // ); // s = max(s, (max_light) / (1.0 + s)); // s = max(s, max_light / (1.0 + max_light)); // vec3 c = pow(col_adjusted, vec3(s)) * T; // vec3 c = col_adjusted * T; // vec3 c = sqrt(col_adjusted) * T; // vec3 c = /*col_adjusted * */col_adjusted * T; // return color; // return c; // float sum_col = color.r + color.g + color.b; // return /*srgb_to_linear*/(/*0.5*//*0.125 * */vec3(pow(color.x, gamma), pow(color.y, gamma), pow(color.z, gamma))); } #endif