#version 440 core // #extension GL_ARB_texture_storage : require #include <constants.glsl> #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_SHADOW_MAPS #include <globals.glsl> #include <random.glsl> layout(location = 0) in vec3 f_pos; // in float f_ao; // in vec3 f_chunk_pos; // #ifdef FLUID_MODE_SHINY layout(location = 1) flat in uint f_pos_norm; // #else // const uint f_pos_norm = 0u; // #endif // in float f_alt; // in vec4 f_shadow; // in vec3 f_col; // in float f_light; /*centroid */layout(location = 3) in vec2 f_uv_pos; // in vec3 light_pos[2]; // const vec3 light_pos[6] = vec3[](vec3(0), vec3(0), vec3(00), vec3(0), vec3(0), vec3(0)); /* #if (SHADOW_MODE == SHADOW_MODE_MAP) in vec4 sun_pos; #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) const vec4 sun_pos = vec4(0.0); #endif */ layout(set = 2, binding = 0) uniform texture2D t_col_light; layout(set = 2, binding = 1) uniform sampler s_col_light; layout(set = 2, binding = 2) uniform utexture2D t_kind; layout(set = 2, binding = 3) uniform sampler s_kind; layout (std140, set = 3, binding = 0) uniform u_locals { mat4 model_mat; ivec4 atlas_offs; float load_time; }; layout(location = 0) out vec4 tgt_color; layout(location = 1) out uvec4 tgt_mat; #include <sky.glsl> #include <light.glsl> #include <lod.glsl> void main() { /* float nz = abs(hash(vec4(floor((f_pos + focus_off.xyz) * 5.0), 0))); if (nz > (tick.x - load_time) / 0.5 || distance(focus_pos.xy, f_pos.xy) / view_distance.x + nz * 0.1 > 1.0) { discard; } */ // discard; // vec4 f_col_light = textureGrad(t_col_light, f_uv_pos / texSize, 0.25, 0.25); // vec4 f_col_light = texture(t_col_light, (f_uv_pos) / texSize); // First 3 normals are negative, next 3 are positive const vec3 normals[8] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1), vec3(0,0,0), vec3(0,0,0)); // uint norm_index = (f_pos_norm >> 29) & 0x7u; // vec2 uv_delta = (norm_index & 0u) == 0u ? vec2(-1.0) : vec2(0); vec2 f_uv_pos = f_uv_pos + atlas_offs.xy; // vec4 f_col_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0)));//(f_uv_pos/* + 0.5*/) / texSize); // float f_light = textureProj(t_col_light, vec3(f_uv_pos + 0.5, textureSize(t_col_light, 0))).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; float f_light, f_glow, f_ao, f_sky_exposure; uint f_kind; vec3 f_col = greedy_extract_col_light_kind_terrain(t_col_light, s_col_light, t_kind, f_uv_pos, f_light, f_glow, f_ao, f_sky_exposure, f_kind); uint f_mat = MAT_BLOCK; #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(simple_lighting(f_pos.xyz, f_col, f_light), 1); return; #endif //float f_light = (uint(texture(t_col_light, (f_uv_pos + 0.5) / textureSize(t_col_light, 0)).r * 255.0) & 0x1Fu) / 31.0; // vec2 texSize = textureSize(t_col_light, 0); // float f_light = texture(t_col_light, f_uv_pos/* + vec2(atlas_offs.xy)*/).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; // float f_light = textureProj(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; // float f_light = textureProjLod(t_col_light, vec3(f_uv_pos/* + vec2(atlas_offs.xy)*/, texSize.x), 0).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; // float f_light = textureGrad(t_col_light, (f_uv_pos + 0.5) / texSize, vec2(0.1, 0.0), vec2(0.0, 0.1)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; // f_light = sqrt(f_light); // f_light = sqrt(f_light); // f_col = vec3((uvec3(v_col_light) >> uvec3(8, 16, 24)) & uvec3(0xFFu)) / 255.0; // vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0); // float f_ao = 1.0; // vec3 my_chunk_pos = vec3(ivec3((uvec3(f_pos_norm) >> uvec3(0, 6, 12)) & uvec3(0x3Fu, 0x3Fu, 0xFFFFu))); // tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0); // tgt_color.rgb *= f_light; // tgt_color = vec4(vec3(f_light), 1.0); // tgt_color = vec4(f_col, 1.0); // return; // vec4 light_pos[2]; // vec4 light_col = vec4( // hash(floor(vec4(f_pos.x, 0, 0, 0))), // hash(floor(vec4(0, f_pos.y, 0, 1))), // hash(floor(vec4(0, 0, f_pos.z, 2))), // 1.0 // ); // vec3 f_col = light_col.rgb;//vec4(1.0, 0.0, 0.0, 1.0); // tgt_color = vec4(f_col, 1.0); // tgt_color = vec4(light_shadow_count.x <= 31u ? f_col : vec3(0.0), 1.0); // tgt_color = vec4(0.0, 0.0, 0.0, 1.0); // float sum = 0.0; // for (uint i = 0u; i < /* 6 * */light_shadow_count.x; i ++) { // // uint i = 1u; // Light L = lights[i/* / 6*/]; // /* vec4 light_col = vec4( // hash(vec4(1.0, 0.0, 0.0, i)), // hash(vec4(1.0, 1.0, 0.0, i)), // hash(vec4(1.0, 0.0, 1.0, i)), // 1.0 // ); */ // vec3 light_col = vec3(1.0);//L.light_col.rgb; // float light_strength = L.light_col.a / 255.0; // // float light_strength = 1.0 / light_shadow_count.x; // vec3 light_pos = L.light_pos.xyz; // // Pre-calculate difference between light and fragment // vec3 fragToLight = f_pos - light_pos; // // vec3 f_norm = normals[(f_pos_norm >> 29) & 0x7u]; // // use the light to fragment vector to sample from the depth map // float bias = 0.0;//0.05;//0.05; // // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i)/*, 0.0*//*, bias*/).r; // // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, lightIndex), bias); // // float closestDepth = texture(t_shadow_maps, vec4(fragToLight, i + 1)/*, bias*/).r; // float currentDepth = VectorToDepth(fragToLight) + bias; // float closestDepth = texture(t_shadow_maps, vec3(fragToLight)/*, -2.5*/).r; // // // float visibility = texture(t_shadow_maps, vec4(fragToLight, i + 1), -(length(fragToLight) - bias)/* / screen_res.w*/); // // it is currently in linear range between [0,1]. Re-transform back to original value // // closestDepth *= screen_res.w; // far plane // // now test for shadows // // float shadow = /*currentDepth*/(screen_res.w - bias) > closestDepth ? 1.0 : 0.0; // // float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0; // // tgt_color += light_col * vec4(vec3(/*closestDepth*/visibility/* + bias*//* / screen_res.w */) * 1.0 / light_shadow_count.x, 0.0); // // tgt_color.rgb += light_col * vec3(closestDepth + 0.05 / screen_res.w) * 1.0 /*/ light_shadow_count.x*/ * light_strength; // tgt_color.rgb += light_col * vec3(closestDepth) * 1.0 / screen_res.w /*/ light_shadow_count.x*/ * light_strength; // sum += light_strength; // } // TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction. // uint norm_axis = (f_pos_norm >> 30) & 0x3u; // // Increase array access by 3 to access positive values // uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u; // Use an array to avoid conditional branching // uint norm_index = (f_pos_norm >> 29) & 0x7u; // vec3 f_norm = normals[norm_index]; vec3 face_norm = normals[(f_pos_norm >> 29) & 0x7u]; vec3 f_norm = face_norm; #ifdef EXPERIMENTAL_BRICKLOREN vec3 pos = f_pos + focus_off.xyz; const vec3 bk_sz = vec3(2, 2, 2); vec3 sz = vec3(1.0 + mod(floor(pos.z * bk_sz.z + floor(pos.x) + floor(pos.y) - 0.01), 2.0) * (bk_sz.x - 1), 1.0 + mod(floor(pos.z * bk_sz.z + floor(pos.x) + floor(pos.y) + 0.99), 2.0) * (bk_sz.y - 1), bk_sz.z); vec3 fp = pos * sz; vec3 clamped = min(floor(fp.xyz) + 1.0 - 0.07 * sz, max(floor(fp.xyz) - 0.07 * sz, fp.xyz)); f_norm.xyz += (fp.xyz - clamped) * 5.0 * sign(1.0 - f_norm) * max(1.0 - length(f_pos - cam_pos.xyz) / 64.0, 0); f_norm = normalize(f_norm); f_col /= 1.0 + length((fp - clamped) * sign(1.0 - f_norm)) * 2; #endif // vec3 du = dFdx(f_pos); // vec3 dv = dFdy(f_pos); // vec3 f_norm = normalize(cross(du, dv)); // /* if (light_shadow_count.x == 1) { // tgt_color.rgb = vec3(0.0); // } */ // if (sum > 0.0) { // tgt_color.rgb /= sum; // } // return; // Whether this face is facing fluid or not. bool faces_fluid = bool((f_pos_norm >> 28) & 0x1u); vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; // vec3 view_dir = normalize(f_pos - cam_pos.xyz); /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM) float f_alt = alt_at(f_pos.xy); #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW) float f_alt = f_pos.z; #endif float alpha = 1.0;//0.0001;//1.0; // TODO: Possibly angle with water surface into account? Since we can basically assume it's horizontal. const float n2 = 1.5;//1.01; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); // float faces_fluid = faces_fluid && f_pos.z <= floor(f_alt); float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1)); float R_s = /*(f_pos.z < f_alt)*/faces_fluid /*&& f_pos.z <= fluid_alt*/ ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); // vec3 surf_color = /*srgb_to_linear*/(f_col); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); // Toggle to see rain_occlusion // tgt_color = vec4(rain_occlusion_at(f_pos.xyz), 0.0, 0.0, 1.0); // return; #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) float f_alpha = 1.0; #else const float f_alpha = 1.0; #endif #if (CLOUD_MODE != CLOUD_MODE_NONE && REFLECTION_MODE >= REFLECTION_MODE_MEDIUM) if (rain_density > 0 && !faces_fluid && f_norm.z > 0.5) { vec3 pos = f_pos + focus_off.xyz; vec3 drop_density = vec3(2, 2, 2); vec3 drop_pos = pos + vec3(pos.zz, 0) + vec3(0, 0, -tick.x * 1.0); drop_pos.z += noise_2d(floor(drop_pos.xy * drop_density.xy) * 13.1) * 10; vec2 cell2d = floor(drop_pos.xy * drop_density.xy); drop_pos.z *= 0.5 + hash_fast(uvec3(cell2d, 0)); vec3 cell = vec3(cell2d, floor(drop_pos.z * drop_density.z)); #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) float puddle = clamp((noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.02) - 0.5) * 20.0, 0.0, 1.0) * min(rain_density * 10.0, 1.0) * clamp((f_sky_exposure - 0.95) * 50.0, 0.0, 1.0); #else const float puddle = 1.0; #endif #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) if (puddle > 0.0) { f_alpha = puddle * 0.2 * max(1.0 + cam_to_frag.z, 0.3); #ifdef EXPERIMENTAL_PUDDLEDETAILS float t0 = sin(tick_loop(2.0 * PI, 8.0, f_pos.x * 3)); float t1 = sin(tick_loop(2.0 * PI, 3.5, -f_pos.x * 6)); float h = (noise_2d((f_pos.xy + focus_off.xy) * 0.3) - 0.5) * t0 + (noise_2d((f_pos.xy + focus_off.xy) * 0.6) - 0.5) * t1; float hx = (noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.3) - 0.5) * t0 + (noise_2d((f_pos.xy + focus_off.xy + vec2(0.1, 0)) * 0.6) - 0.5) * t1; float hy = (noise_2d((f_pos.xy + focus_off.xy + vec2(0, 0.1)) * 0.3) - 0.5) * t0 + (noise_2d((f_pos.xy + focus_off.xy + vec2(0, 0.1)) * 0.6) - 0.5) * t1; f_norm.xy += mix(vec2(0), vec2(h - hx, h - hy) / 0.1 * 0.03, puddle); #endif alpha = mix(1.0, 0.2, puddle); f_col.rgb *= mix(1.0, 0.7, puddle); k_s = mix(k_s, vec3(0.7, 0.7, 1.0), puddle); f_mat = MAT_FLUID; } #endif if (rain_occlusion_at(f_pos.xyz + vec3(0, 0, 0.25)) > 0.5) { if (fract(hash(fract(vec4(cell, 0) * 0.01))) < rain_density * 2.0) { vec3 off = vec3(hash_fast(uvec3(cell * 13)), hash_fast(uvec3(cell * 5)), 0); vec3 near_cell = (cell + 0.5 + (off - 0.5) * 0.5) / drop_density; float dist = length((drop_pos - near_cell) * vec3(1, 1, 0.5)); float drop_rad = 0.075 + puddle * 0.05; float distort = max(1.0 - abs(dist - drop_rad) * 100, 0) * 1.5 * max(drop_pos.z - near_cell.z, 0); k_a += distort; k_d += distort; k_s += distort; f_norm.xy += (drop_pos - near_cell).xy * max(1.0 - abs(dist - drop_rad) * 30, 0) * 500.0 * max(drop_pos.z - near_cell.z, 0) * sign(dist - drop_rad) * max(drop_pos.z - near_cell.z, 0); } } } #endif #if (REFLECTION_MODE >= REFLECTION_MODE_HIGH) // Reflections on ice if (f_kind == BLOCK_ICE && f_norm.z == 1.0) { f_alpha = min(f_alpha, 0.3); k_s = mix(k_s, vec3(0.7, 0.7, 1.0), 0.5); } #endif // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ // float f_alt = alt_at(f_pos.xy); // vec4 f_shadow = textureMaybeBicubic(t_horizon, pos_to_tex(f_pos.xy)); #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureMaybeBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). // float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/); #ifdef EXPERIMENTAL_DIRECTIONALSHADOWMAPTEXELGRID float offset_scale = 0.5; vec3 offset_one = dFdx(f_pos) * offset_scale; vec3 offset_two = dFdy(f_pos) * offset_scale; vec3 one_up = f_pos + offset_one; vec3 one_down = f_pos - offset_one; vec3 two_up = f_pos + offset_two; vec3 two_down = f_pos - offset_two; // Adjust this to change the size of the grid cells relative to the // number of shadow texels float grid_cell_to_texel_ratio = 32.0; vec2 shadowTexSize = textureSize(sampler2D(t_directed_shadow_maps, s_directed_shadow_maps), 0) / grid_cell_to_texel_ratio; vec4 one_up_shadow_tex = texture_mat * vec4(one_up, 1.0); vec2 oust_snap = floor(one_up_shadow_tex.xy * shadowTexSize / one_up_shadow_tex.w); vec4 one_down_shadow_tex = texture_mat * vec4(one_down, 1.0); vec2 odst_snap = floor(one_down_shadow_tex.xy * shadowTexSize / one_down_shadow_tex.w); vec4 two_up_shadow_tex = texture_mat * vec4(two_up, 1.0); vec2 tust_snap = floor(two_up_shadow_tex.xy * shadowTexSize / two_up_shadow_tex.w); vec4 two_down_shadow_tex = texture_mat * vec4(two_down, 1.0); vec2 tdst_snap = floor(two_down_shadow_tex.xy * shadowTexSize / two_down_shadow_tex.w); float border = length(max(abs(oust_snap - odst_snap), abs(tust_snap - tdst_snap))); if (border != 0.0) { tgt_color = vec4(vec3(0.0, 0.7, 0.2), 1.0); return; } #endif float max_light = 0.0; // After shadows are computed, we use a refracted sun and moon direction. // sun_dir = faces_fluid && sun_shade_frac > 0.0 ? refract(sun_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : sun_dir; // moon_dir = faces_fluid && moon_shade_frac > 0.0 ? refract(moon_dir/*-view_dir*/, vec3(0.0, 0.0, 1.0), 1.0 / 1.3325) : moon_dir; // Compute attenuation due to water from the camera. vec3 mu = faces_fluid/* && f_pos.z <= fluid_alt*/ ? MU_WATER : vec3(0.0); // NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water. // Computing light attenuation from water. vec3 cam_attenuation = false/*medium.x == MEDIUM_WATER*/ ? compute_attenuation_point(cam_pos.xyz, view_dir, MU_WATER, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos) : compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz); // Prevent the sky affecting light when underground float not_underground = clamp((f_pos.z - f_alt) / 128.0 + 1.0, 0.0, 1.0); // To account for prior saturation #if (FLUID_MODE == FLUID_MODE_LOW) f_light = f_light * sqrt(f_light); #else f_light = faces_fluid ? not_underground : f_light * sqrt(f_light); #endif vec3 emitted_light = vec3(1.0); vec3 reflected_light = vec3(1.0); float sun_diffuse = get_sun_diffuse2(sun_info, moon_info, f_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); max_light += sun_diffuse; // emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW); // reflected_light *= f_light * point_shadow * shade_frac; // max_light *= f_light * point_shadow * shade_frac; emitted_light *= f_light; reflected_light *= f_light; max_light *= f_light; // TODO: Hack to add a small amount of underground ambient light to the scene reflected_light += vec3(0.01, 0.02, 0.03) * (1.0 - not_underground); // TODO: Apply AO after this vec3 glow = glow_light(f_pos) * (pow(f_glow, 3) * 5 + pow(f_glow, 2.0) * 2) * pow(max(dot(face_norm, f_norm), 0), 2); reflected_light += glow * cam_attenuation; max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); emitted_light *= mix(1.0, f_ao, 0.5); reflected_light *= mix(1.0, f_ao, 0.5); float point_shadow = shadow_at(f_pos, f_norm); reflected_light *= point_shadow; emitted_light *= point_shadow; #ifndef EXPERIMENTAL_NOCAUSTICS #if (FLUID_MODE >= FLUID_MODE_MEDIUM) if (faces_fluid) { vec3 wpos = f_pos + vec3(focus_off.xy, 0); vec3 spos = (wpos + (fluid_alt - wpos.z) * vec3(sun_dir.xy, 0)) * 0.25; reflected_light += caustics(spos.xy * 1.0, tick.x * 0.5) * 3 / (1.0 + pow(abs(fluid_alt - wpos.z) * 0.075, 2)) * cam_attenuation * max(dot(f_norm, -sun_dir.xyz), 0) * sun_diffuse * sun_info.shadow * f_light; } #endif #endif // float f_ao = 1.0; // float ao = /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1; // emitted_light *= ao; // reflected_light *= ao; /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ // float point_shadow = shadow_at(f_pos, f_norm); // vec3 point_light = light_at(f_pos, f_norm); // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, k_a * f_light, k_d * f_light, k_s * f_light, alpha, emitted_light, reflected_light); // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // float point_shadow = shadow_at(f_pos, f_norm); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light * point_shadow; // vec3 point_light = light_at(f_pos, f_norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // reflected_light += light_reflection_factor(norm, cam_to_frag, , vec3 k_d, vec3 k_s, float alpha) { // light_reflection_factorplight_reflection_factor // vec3 surf_color = illuminate(srgb_to_linear(f_col), light, diffuse_light, ambient_light); vec3 f_chunk_pos = f_pos - (model_mat[3].xyz - focus_off.xyz); #ifdef EXPERIMENTAL_NONOISE float noise = 0.0; #else #ifdef EXPERIMENTAL_BRICKLOREN float noise = hash(vec4(floor(clamped), 0)) * 2 + hash(vec4(floor(clamped * 27 / sz), 0)) * 0.5; #else float noise = hash(vec4(floor(f_chunk_pos * 3.0 - f_norm * 0.5), 0));//0.005/* - 0.01*/; #endif #endif //vec3 srgb_to_linear(vec3 srgb) { // bvec3 cutoff = lessThan(srgb, vec3(0.04045)); // vec3 higher = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4)); // vec3 lower = srgb/vec3(12.92); // // return mix(higher, lower, cutoff); //} // //vec3 linear_to_srgb(vec3 col) { // // bvec3 cutoff = lessThan(col, vec3(0.0060)); // // return mix(11.500726 * col, , cutoff); // vec3 s1 = vec3(sqrt(col.r), sqrt(col.g), sqrt(col.b)); // vec3 s2 = vec3(sqrt(s1.r), sqrt(s1.g), sqrt(s1.b)); // vec3 s3 = vec3(sqrt(s2.r), sqrt(s2.g), sqrt(s2.b)); // return vec3( // mix(11.500726 * col.r, (0.585122381 * s1.r + 0.783140355 * s2.r - 0.368262736 * s3.r), clamp((col.r - 0.0060) * 10000.0, 0.0, 1.0)), // mix(11.500726 * col.g, (0.585122381 * s1.g + 0.783140355 * s2.g - 0.368262736 * s3.g), clamp((col.g - 0.0060) * 10000.0, 0.0, 1.0)), // mix(11.500726 * col.b, (0.585122381 * s1.b + 0.783140355 * s2.b - 0.368262736 * s3.b), clamp((col.b - 0.0060) * 10000.0, 0.0, 1.0)) // ); // // 11.500726 //} // vec3 noise_delta = vec3(noise * 0.005); // vec3 noise_delta = noise * 0.02 * (1.0 - vec3(0.2126, 0.7152, 0.0722)); // vec3 noise_delta = noise * 0.002 / vec3(0.2126, 0.7152, 0.0722); // vec3 noise_delta = sqrt(f_col) + noise; /* vec3 noise_delta = f_col + noise * 0.02; noise_delta *= noise_delta; noise_delta -= f_col; */ // vec3 noise_delta = (1.0 - f_col) * 0.02 * noise * noise; // // a = 0.055 // // 1 / (1 + a) = 1 / (1 + 0.055) ~ 0.947867299 // // l2s = x^(1/2.4) * (1 / (1 + a)) - a + c // s2l = (l + a)^2.4 * (1 / (1 + a))^2.4 // = ((x^(1/2.4) * (1 / (1 + a)) - a + c) + a)^2.4 * (1 / (1 + a))^2.4 // = (x^(1/2.4) * (1 / (1 + a)) + c)^2.4 * (1 / (1 + a))^2.4 // // ~ (x^(1/2) * 1 / (1 + a) + c)^2 * (1 / (1 + a))^2 // // = ((x + a)^2.4 * (1 / (1 + a))^2.4 + c)^(1/2.4) * (1 / (1 + a))^(1/2.4) // = (((x + a)^2.4 + c * (1 + a)^2.4) * (1 / (1 + a))^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4) // = ((x + a)^2.4 + c * (1 + a)^2.4)^(1/2.4) * ((1 / (1 + a))^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4) // = ((x + a)^2.4 + c * (1 + a)^2.4)^(1/2.4) * (1 / (1 + a))^(1/2.4) // // = ((x + a)^2 + c * (1 + a)^2)^(1/2) * (1 / (1 + a))^(1/2) // = (x^2 + a^2 + 2xa + c + ca^2 + 2ac)^(1/2) * (1 / (1 + a))^(1/2) // const float A = 0.055; const float W_INV = 1 / (1 + A); const float W_2 = W_INV * W_INV;//pow(W_INV, 2.4); const float NOISE_FACTOR = 0.015;//pow(0.02, 1.2); vec3 noise_delta = (sqrt(f_col) * W_INV + noise * NOISE_FACTOR); // noise_delta = noise_delta * noise_delta * W_2 - f_col; // lum = W ⋅ col // lum + noise = W ⋅ (col + delta) // W ⋅ col + noise = W ⋅ col + W ⋅ delta // noise = W ⋅ delta // delta = noise / W // vec3 col = (f_col + noise_delta); vec3 col = noise_delta * noise_delta * W_2; // vec3 col = srgb_to_linear(linear_to_srgb(f_col) + noise * 0.02); // vec3 col = /*srgb_to_linear*/(f_col + noise); // Small-scale noise // vec3 col = /*srgb_to_linear*/(f_col + hash(vec4(floor(f_pos * 3.0 - f_norm * 0.5), 0)) * 0.01); // Small-scale noise vec3 surf_color = illuminate(max_light, view_dir, col * emitted_light, col * reflected_light); #ifdef EXPERIMENTAL_SNOWGLITTER if (f_kind == BLOCK_SNOW || f_kind == BLOCK_ART_SNOW) { float cam_distance = distance(cam_pos.xyz, f_pos); vec3 pos = f_pos + focus_off.xyz; float map = max(noise_3d(pos), 0.0); vec4 lpos = vec4(floor(pos * 35.0), 0.0); vec3 n = normalize(vec3(hash(lpos + 128), hash(lpos - 435), hash(lpos + 982))); float s = pow(abs(dot(n, view_dir)), 4.0); surf_color += pow(map * s, 10.0) * 5.0 / max(1.0, cam_distance * 0.5); } #endif float f_select = (select_pos.w > 0 && select_pos.xyz == floor(f_pos - f_norm * 0.5)) ? 1.0 : 0.0; surf_color += f_select * (surf_color + 0.1) * vec3(0.5, 0.5, 0.5); tgt_color = vec4(surf_color, f_alpha); tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), f_mat); //tgt_color = vec4(f_norm, f_alpha); }