mod econ; use std::{ ops::Range, hash::Hash, }; use hashbrown::{HashMap, HashSet}; use vek::*; use rand::prelude::*; use common::{ terrain::TerrainChunkSize, vol::RectVolSize, store::{Id, Store}, path::Path, astar::Astar, }; use crate::sim::{WorldSim, SimChunk}; const CARDINALS: [Vec2; 4] = [ Vec2::new(1, 0), Vec2::new(-1, 0), Vec2::new(0, 1), Vec2::new(0, -1), ]; const DIAGONALS: [Vec2; 8] = [ Vec2::new(1, 0), Vec2::new(1, 1), Vec2::new(-1, 0), Vec2::new(-1, 1), Vec2::new(0, 1), Vec2::new(1, -1), Vec2::new(0, -1), Vec2::new(-1, -1), ]; fn attempt(max_iters: usize, mut f: impl FnMut() -> Option) -> Option { (0..max_iters).find_map(|_| f()) } const INITIAL_CIV_COUNT: usize = 32; #[derive(Default)] pub struct Civs { civs: Store, places: Store, tracks: Store, track_map: HashMap, HashMap, Id>>, sites: Store, } pub struct GenCtx<'a, R: Rng> { sim: &'a mut WorldSim, rng: &'a mut R, } impl Civs { pub fn generate(seed: u32, sim: &mut WorldSim) -> Self { let mut this = Self::default(); let mut rng = sim.rng.clone(); let mut ctx = GenCtx { sim, rng: &mut rng }; for _ in 0..INITIAL_CIV_COUNT { println!("Creating civilisation..."); if let None = this.birth_civ(&mut ctx) { println!("Failed to find starting site for civilisation."); } } // Tick const SIM_YEARS: usize = 1000; for _ in 0..SIM_YEARS { this.tick(&mut ctx, 1.0); } // Temporary! for track in this.tracks.iter() { for loc in track.path.iter() { sim.get_mut(*loc).unwrap().place = Some(this.civs.iter().next().unwrap().homeland); } } this.display_info(); this } pub fn place(&self, id: Id) -> &Place { self.places.get(id) } pub fn sites(&self) -> impl Iterator + '_ { self.sites.iter() } fn display_info(&self) { for (id, civ) in self.civs.iter_ids() { println!("# Civilisation {:?}", id); println!("Name: {}", ""); println!("Homeland: {:#?}", self.places.get(civ.homeland)); } for (id, site) in self.sites.iter_ids() { println!("# Site {:?}", id); println!("{:#?}", site); } } /// Return the direct track between two places fn track_between(&self, a: Id, b: Id) -> Option> { self.track_map .get(&a) .and_then(|dests| dests.get(&b)) .or_else(|| self.track_map .get(&b) .and_then(|dests| dests.get(&a))) .copied() } /// Return an iterator over a site's neighbors fn neighbors(&self, site: Id) -> impl Iterator> + '_ { let to = self.track_map.get(&site).map(|dests| dests.keys()).into_iter().flatten(); let fro = self.track_map.iter().filter(move |(_, dests)| dests.contains_key(&site)).map(|(p, _)| p); to.chain(fro).filter(move |p| **p != site).copied() } /// Find the cheapest route between two places fn route_between(&self, a: Id, b: Id) -> Option<(Path>, f32)> { let heuristic = move |p: &Id| (self.sites.get(*p).center.distance_squared(self.sites.get(b).center) as f32).sqrt(); let neighbors = |p: &Id| self.neighbors(*p); let transition = |a: &Id, b: &Id| self.tracks.get(self.track_between(*a, *b).unwrap()).cost; let satisfied = |p: &Id| *p == b; let mut astar = Astar::new(100, a, heuristic); astar .poll(100, heuristic, neighbors, transition, satisfied) .into_path() .and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost))) } fn birth_civ(&mut self, ctx: &mut GenCtx) -> Option> { let site = attempt(5, || { let loc = find_site_loc(ctx, None)?; self.establish_site(ctx, loc) })?; let civ = self.civs.insert(Civ { capital: site, homeland: self.sites.get(site).place, }); Some(civ) } fn establish_place(&mut self, ctx: &mut GenCtx, loc: Vec2, area: Range) -> Option> { let mut dead = HashSet::new(); let mut alive = HashSet::new(); alive.insert(loc); // Fill the surrounding area while let Some(cloc) = alive.iter().choose(ctx.rng).copied() { for dir in CARDINALS.iter() { if site_in_dir(&ctx.sim, cloc, *dir) { let rloc = cloc + *dir; if !dead.contains(&rloc) && ctx.sim.get(rloc).map(|c| c.place.is_none()).unwrap_or(false) { alive.insert(rloc); } } } alive.remove(&cloc); dead.insert(cloc); if dead.len() + alive.len() >= area.end { break; } } // Make sure the place is large enough if dead.len() + alive.len() <= area.start { return None; } let place = self.places.insert(Place { center: loc, nat_res: NaturalResources::default(), }); // Write place to map for cell in dead.union(&alive) { if let Some(chunk) = ctx.sim.get_mut(*cell) { chunk.place = Some(place); self.places.get_mut(place).nat_res.include_chunk(ctx, *cell); } } Some(place) } fn establish_site(&mut self, ctx: &mut GenCtx, loc: Vec2) -> Option> { const SITE_AREA: Range = 64..256; let place = match ctx.sim.get(loc).and_then(|site| site.place) { Some(place) => place, None => self.establish_place(ctx, loc, SITE_AREA)?, }; let site = self.sites.insert(Site { kind: SiteKind::Settlement, center: loc, place: place, population: 24.0, labor: MapVec::default(), output: MapVec::default(), stocks: Stocks::default(), trade_states: Stocks::default(), coin: 1000.0, }); // Find neighbors const MAX_NEIGHBOR_DISTANCE: f32 = 250.0; let mut nearby = self.sites .iter_ids() .map(|(id, p)| (id, (p.center.distance_squared(loc) as f32).sqrt())) .filter(|(p, dist)| *dist < MAX_NEIGHBOR_DISTANCE) .collect::>(); nearby.sort_by_key(|(_, dist)| *dist as i32); for (nearby, _) in nearby.into_iter().take(5) { // Find a novel path if let Some((path, cost)) = find_path(ctx, loc, self.sites.get(nearby).center) { // Find a path using existing paths if self .route_between(site, nearby) // If the novel path isn't efficient compared to existing routes, don't use it .filter(|(_, route_cost)| *route_cost < cost * 3.0) .is_none() { let track = self.tracks.insert(Track { cost, path, }); self.track_map .entry(site) .or_default() .insert(nearby, track); } } } Some(site) } fn tick(&mut self, ctx: &mut GenCtx, years: f32) { // Collect stocks for site in self.sites.iter_mut() { site.collect_stocks(years, &self.places.get(site.place).nat_res); } // Trade stocks let mut stocks = [FOOD, WOOD, ROCK]; stocks.shuffle(ctx.rng); // Give each stock a chance to be traded first for stock in stocks.iter().copied() { let mut sell_orders = self.sites .iter_ids() .map(|(id, site)| (id, econ::SellOrder { quantity: site.trade_states[stock].surplus.min(site.stocks[stock]), price: site.trade_states[stock].sell_belief.choose_price(ctx) * 1.5, // Transport cost of 1.5x q_sold: 0.0, })) .filter(|(_, order)| order.quantity > 0.0) .collect::>(); let mut sites = self.sites .ids() .collect::>(); sites.shuffle(ctx.rng); // Give all sites a chance to buy first for site in sites { let (max_spend, max_price) = { let site = self.sites.get(site); let budget = site.coin * 0.5; ( (site.trade_states[stock].purchase_priority * budget).min(budget), site.trade_states[stock].buy_belief.price, ) }; let (quantity, spent) = econ::buy_units(ctx, sell_orders .iter_mut() .filter(|(id, _)| site != *id && self.track_between(site, *id).is_some()) .map(|(_, order)| order), 1000000.0, // Max quantity TODO 1000000.0, // Max price TODO max_spend, ); let mut site = self.sites.get_mut(site); site.coin -= spent; if quantity > 0.0 { site.stocks[stock] += quantity; site.trade_states[stock].buy_belief.update_buyer(years, spent / quantity); println!("Belief: {:?}", site.trade_states[stock].buy_belief); } } for (site, order) in sell_orders { let mut site = self.sites.get_mut(site); site.coin += order.q_sold * order.price; if order.q_sold > 0.0 { site.stocks[stock] -= order.q_sold; site.trade_states[stock].sell_belief.update_seller(order.q_sold / order.quantity); } } } // Consume stocks for site in self.sites.iter_mut() { site.consume_stocks(years); } } } /// Attempt to find a path between two locations fn find_path(ctx: &mut GenCtx, a: Vec2, b: Vec2) -> Option<(Path>, f32)> { let sim = &ctx.sim; let heuristic = move |l: &Vec2| (l.distance_squared(b) as f32).sqrt(); let neighbors = |l: &Vec2| { let l = *l; DIAGONALS.iter().filter(move |dir| walk_in_dir(sim, l, **dir).is_some()).map(move |dir| l + *dir) }; let transition = |a: &Vec2, b: &Vec2| 1.0 + walk_in_dir(sim, *a, *b - *a).unwrap_or(10000.0); let satisfied = |l: &Vec2| *l == b; let mut astar = Astar::new(20000, a, heuristic); astar .poll(20000, heuristic, neighbors, transition, satisfied) .into_path() .and_then(|path| astar.get_cheapest_cost().map(|cost| (path, cost))) } /// Return true if travel between a location and a chunk next to it is permitted (TODO: by whom?) fn walk_in_dir(sim: &WorldSim, a: Vec2, dir: Vec2) -> Option { if loc_suitable_for_walking(sim, a) && loc_suitable_for_walking(sim, a + dir) { let a_alt = sim.get(a)?.alt; let b_alt = sim.get(a + dir)?.alt; Some((b_alt - a_alt).abs() / 2.5) } else { None } } /// Return true if a position is suitable for walking on fn loc_suitable_for_walking(sim: &WorldSim, loc: Vec2) -> bool { if let Some(chunk) = sim.get(loc) { !chunk.river.is_ocean() && !chunk.river.is_lake() } else { false } } /// Return true if a site could be constructed between a location and a chunk next to it is permitted (TODO: by whom?) fn site_in_dir(sim: &WorldSim, a: Vec2, dir: Vec2) -> bool { loc_suitable_for_site(sim, a) && loc_suitable_for_site(sim, a + dir) } /// Return true if a position is suitable for site construction (TODO: criteria?) fn loc_suitable_for_site(sim: &WorldSim, loc: Vec2) -> bool { if let Some(chunk) = sim.get(loc) { !chunk.river.is_ocean() && !chunk.river.is_lake() && sim.get_gradient_approx(loc).map(|grad| grad < 1.0).unwrap_or(false) } else { false } } /// Attempt to search for a location that's suitable for site construction fn find_site_loc(ctx: &mut GenCtx, near: Option<(Vec2, f32)>) -> Option> { const MAX_ATTEMPTS: usize = 100; let mut loc = None; for _ in 0..MAX_ATTEMPTS { let test_loc = loc.unwrap_or_else(|| match near { Some((origin, dist)) => origin + (Vec2::new( ctx.rng.gen_range(-1.0, 1.0), ctx.rng.gen_range(-1.0, 1.0), ).try_normalized().unwrap_or(Vec2::zero()) * ctx.rng.gen::() * dist).map(|e| e as i32), None => Vec2::new( ctx.rng.gen_range(0, ctx.sim.get_size().x as i32), ctx.rng.gen_range(0, ctx.sim.get_size().y as i32), ), }); if loc_suitable_for_site(&ctx.sim, test_loc) { return Some(test_loc); } loc = ctx.sim.get(test_loc).and_then(|c| Some(c.downhill?.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| { e / (sz as i32) }))); } None } #[derive(Debug)] pub struct Civ { capital: Id, homeland: Id, } #[derive(Debug)] pub struct Place { center: Vec2, nat_res: NaturalResources, } // Productive capacity per year #[derive(Default, Debug)] pub struct NaturalResources { wood: f32, stone: f32, river: f32, farmland: f32, } impl NaturalResources { fn include_chunk(&mut self, ctx: &mut GenCtx, loc: Vec2) { let chunk = if let Some(chunk) = ctx.sim.get(loc) { chunk } else { return }; self.wood += chunk.tree_density; self.stone += chunk.rockiness; self.river += if chunk.river.is_river() { 5.0 } else { 0.0 }; self.farmland += if chunk.humidity > 0.35 && chunk.temp > -0.3 && chunk.temp < 0.75 && chunk.chaos < 0.5 && ctx.sim.get_gradient_approx(loc).map(|grad| grad < 0.7).unwrap_or(false) { 1.0 } else { 0.0 }; } } pub struct Track { /// Cost of using this track relative to other paths. This cost is an arbitrary unit and /// doesn't make sense unless compared to other track costs. cost: f32, path: Path>, } #[derive(Debug)] pub struct Site { kind: SiteKind, center: Vec2, pub place: Id, population: f32, labor: MapVec, output: MapVec, stocks: Stocks, trade_states: Stocks, coin: f32, } #[derive(Debug)] pub enum SiteKind { Settlement, } impl Site { pub fn collect_stocks(&mut self, years: f32, nat_res: &NaturalResources) { // Per labourer, per year let collection_rate = Stocks::from_list(&[ (FARMER, 2.0), (LUMBERJACK, 1.5), (MINER, 0.6), (FISHER, 5.0), ]); // Proportion of the population dedicated to each task (output * price) let labor_ratios = Stocks::from_list(&[ (FARMER, self.output[FARMER] * self.trade_states[FOOD].domestic_value), (LUMBERJACK, self.output[LUMBERJACK] * self.trade_states[WOOD].domestic_value), (MINER, self.output[MINER] * self.trade_states[ROCK].domestic_value), (FISHER, self.output[FISHER] * self.trade_states[FOOD].domestic_value), ]); // Normalise workforce proportions (so we aren't over-allocating our workforce) let wf_total = labor_ratios.iter().map(|(_, r)| *r).sum::(); if wf_total == 0.0 { // 0 output doesn't mean NaNs let n = labor_ratios.iter().count() as f32; self.labor = labor_ratios.map(|stock, _| self.population / n); } else { self.labor = labor_ratios.map(|stock, r| r / wf_total * self.population); } self.output[FARMER] = (self.labor[FARMER] * collection_rate[FARMER] + nat_res.farmland * 0.01).min(nat_res.farmland); self.output[LUMBERJACK] = (self.labor[LUMBERJACK] * collection_rate[LUMBERJACK] + nat_res.wood * 0.01).min(nat_res.wood); self.output[MINER] = (self.labor[MINER] * collection_rate[MINER] + nat_res.stone * 0.01).min(nat_res.stone); self.output[FISHER] = (self.labor[FISHER] * collection_rate[FISHER] + nat_res.river * 0.01).min(nat_res.river); self.stocks[FOOD] += years * self.output[FARMER]; self.stocks[WOOD] += years * self.output[LUMBERJACK]; self.stocks[ROCK] += years * self.output[MINER]; self.stocks[FOOD] += years * self.output[FISHER]; } pub fn consume_stocks(&mut self, years: f32) { const EAT_RATE: f32 = 1.0; const USE_WOOD_RATE: f32 = 0.75; const BIRTH_RATE: f32 = 0.15; const DEATH_RATE: f32 = 0.05; let required = Stocks::from_list(&[ (FOOD, self.population as f32 * years * EAT_RATE), (WOOD, self.population as f32 * years * USE_WOOD_RATE), ]); // Calculate surplus and deficit of each stock let surplus = required.clone().map(|stock, required| (self.stocks[stock] - required).max(0.0)); let deficit = required.clone().map(|stock, required| (required - self.stocks[stock]).max(0.0)); // Deplete stocks self.stocks.iter_mut().for_each(|(stock, v)| *v = (*v - required[stock]).max(0.0)); // Births self.population += years * self.population * BIRTH_RATE; // Kill people self.population -= years * self.population * DEATH_RATE; // Natural death rate self.population = (self.population - deficit[FOOD] * years * EAT_RATE).max(0.0); // Starvation // If in deficit, value the stock more deficit.iter().for_each(|(stock, deficit)| { if *deficit > 0.0 { let mut trade_state = &mut self.trade_states[stock]; trade_state.domestic_value += *deficit * 0.01; trade_state.surplus = -*deficit; trade_state.purchase_priority *= 1.1; } }); // If in surplus, value the stock less surplus.iter().for_each(|(stock, surplus)| { if *surplus > 0.0 { let mut trade_state = &mut self.trade_states[stock]; trade_state.domestic_value /= 1.0 + *surplus * 0.01; trade_state.surplus = *surplus; } }); // Normalise purchasing priorities let pp_avg = self.trade_states.iter().map(|(_, ts)| ts.purchase_priority).sum::() / self.trade_states.iter().count() as f32; self.trade_states.iter_mut().for_each(|(_, ts)| ts.purchase_priority /= pp_avg); } } type Occupation = &'static str; const FARMER: Occupation = "farmer"; const LUMBERJACK: Occupation = "lumberjack"; const MINER: Occupation = "miner"; const FISHER: Occupation = "fisher"; type Stock = &'static str; const FOOD: Stock = "food"; const WOOD: Stock = "wood"; const ROCK: Stock = "rock"; #[derive(Debug, Clone)] struct TradeState { buy_belief: econ::Belief, sell_belief: econ::Belief, /// The price/value assigned to the stock by the host settlement domestic_value: f32, surplus: f32, purchase_priority: f32, } impl Default for TradeState { fn default() -> Self { Self { buy_belief: econ::Belief { price: 1.0, confidence: 0.25, }, sell_belief: econ::Belief { price: 1.0, confidence: 0.25, }, domestic_value: 1.0, surplus: 0.0, purchase_priority: 1.0, } } } pub type Stocks = MapVec; #[derive(Default, Clone, Debug)] pub struct MapVec { stocks: HashMap, zero: T, } impl MapVec { pub fn from_list<'a>(i: impl IntoIterator) -> Self where K: 'a, T: 'a { Self { stocks: i.into_iter().cloned().collect(), zero: T::default(), } } pub fn get_mut(&mut self, stock: K) -> &mut T { self .stocks .entry(stock) .or_default() } pub fn get(&self, stock: K) -> &T { self.stocks.get(&stock).unwrap_or(&self.zero) } pub fn map(mut self, mut f: impl FnMut(K, T) -> T) -> Self { self.stocks.iter_mut().for_each(|(s, v)| *v = f(*s, std::mem::take(v))); self } pub fn iter(&self) -> impl Iterator + '_ { self.stocks.iter().map(|(s, v)| (*s, v)) } pub fn iter_mut(&mut self) -> impl Iterator + '_ { self.stocks.iter_mut().map(|(s, v)| (*s, v)) } } impl std::ops::Index for MapVec { type Output = T; fn index(&self, stock: K) -> &Self::Output { self.get(stock) } } impl std::ops::IndexMut for MapVec { fn index_mut(&mut self, stock: K) -> &mut Self::Output { self.get_mut(stock) } }