use crate::Server; use common::{ comp::{ agent::{Agent, AgentEvent}, inventory::{item::MaterialStatManifest, Inventory}, }, trade::{PendingTrade, ReducedInventory, TradeAction, TradeId, TradeResult, Trades}, }; use common_net::{ msg::ServerGeneral, sync::{Uid, WorldSyncExt}, }; use hashbrown::hash_map::Entry; use specs::{world::WorldExt, Entity as EcsEntity}; use std::cmp::Ordering; use tracing::{error, trace}; use world::IndexOwned; fn notify_agent_simple( mut agents: specs::WriteStorage, entity: EcsEntity, event: AgentEvent, ) { if let Some(agent) = agents.get_mut(entity) { agent.inbox.push_front(event); } } fn notify_agent_prices( mut agents: specs::WriteStorage, index: &IndexOwned, entity: EcsEntity, event: AgentEvent, ) { if let Some((Some(site_id), agent)) = agents.get_mut(entity).map(|a| (a.behavior.trade_site, a)) { let prices = index.get_site_prices(site_id); if let AgentEvent::UpdatePendingTrade(boxval) = event { // Box<(tid, pend, _, inventories)>) = event { agent .inbox .push_front(AgentEvent::UpdatePendingTrade(Box::new(( // Prefer using this Agent's price data, but use the counterparty's price // data if we don't have price data boxval.0, boxval.1, prices.unwrap_or(boxval.2), boxval.3, )))); } } } /// Invoked when the trade UI is up, handling item changes, accepts, etc pub fn handle_process_trade_action( server: &mut Server, entity: EcsEntity, trade_id: TradeId, action: TradeAction, ) { if let Some(uid) = server.state.ecs().uid_from_entity(entity) { let mut trades = server.state.ecs().write_resource::(); if let TradeAction::Decline = action { let to_notify = trades.decline_trade(trade_id, uid); to_notify .and_then(|u| server.state.ecs().entity_from_uid(u.0)) .map(|e| { server.notify_client(e, ServerGeneral::FinishedTrade(TradeResult::Declined)); notify_agent_simple( server.state.ecs().write_storage::(), e, AgentEvent::FinishedTrade(TradeResult::Declined), ); }); } else { { let ecs = server.state.ecs(); let inventories = ecs.read_component::(); let get_inventory = |uid: Uid| { if let Some(entity) = ecs.entity_from_uid(uid.0) { inventories.get(entity) } else { None } }; trades.process_trade_action(trade_id, uid, action, get_inventory); } if let Entry::Occupied(entry) = trades.trades.entry(trade_id) { let parties = entry.get().parties; if entry.get().should_commit() { let result = commit_trade(server.state.ecs(), entry.get()); entry.remove(); for party in parties.iter() { if let Some(e) = server.state.ecs().entity_from_uid(party.0) { server.notify_client(e, ServerGeneral::FinishedTrade(result.clone())); notify_agent_simple( server.state.ecs().write_storage::(), e, AgentEvent::FinishedTrade(result.clone()), ); } } } else { let mut entities: [Option; 2] = [None, None]; let mut inventories: [Option; 2] = [None, None]; let mut prices = None; let agents = server.state.ecs().read_storage::(); // sadly there is no map and collect on arrays for i in 0..2 { // parties.len()) { entities[i] = server.state.ecs().entity_from_uid(parties[i].0); if let Some(e) = entities[i] { inventories[i] = server .state .ecs() .read_component::() .get(e) .map(|i| ReducedInventory::from(i)); // Get price info from the first Agent in the trade (currently, an // Agent will never initiate a trade with another agent though) prices = prices.or_else(|| { agents .get(e) .and_then(|a| a.behavior.trade_site) .and_then(|id| server.index.get_site_prices(id)) }); } } drop(agents); for party in entities.iter() { if let Some(e) = *party { server.notify_client( e, ServerGeneral::UpdatePendingTrade( trade_id, entry.get().clone(), prices.clone(), ), ); notify_agent_prices( server.state.ecs().write_storage::(), &server.index, e, AgentEvent::UpdatePendingTrade(Box::new(( trade_id, entry.get().clone(), prices.clone().unwrap_or_default(), inventories.clone(), ))), ); } } } } } } } //Cancel all trades registered for a given UID. pub fn cancel_trade_for(server: &mut Server, entity: EcsEntity) { if let Some(uid) = server.state().ecs().uid_from_entity(entity) { let mut trades = server.state.ecs().write_resource::(); let active_trade = match trades.entity_trades.get(&uid) { Some(n) => *n, None => { return; }, }; let to_notify = trades.decline_trade(active_trade, uid); to_notify .and_then(|u| server.state.ecs().entity_from_uid(u.0)) .map(|e| { server.notify_client(e, ServerGeneral::FinishedTrade(TradeResult::Declined)); notify_agent_simple( server.state.ecs().write_storage::(), e, AgentEvent::FinishedTrade(TradeResult::Declined), ); }); } } /// Commit a trade that both parties have agreed to, modifying their respective /// inventories fn commit_trade(ecs: &specs::World, trade: &PendingTrade) -> TradeResult { let mut entities = Vec::new(); for party in trade.parties.iter() { match ecs.entity_from_uid(party.0) { Some(entity) => entities.push(entity), None => return TradeResult::Declined, } } let mut inventories = ecs.write_storage::(); for entity in entities.iter() { if inventories.get_mut(*entity).is_none() { return TradeResult::Declined; } } let invmsg = "inventories.get_mut(entities[who]).is_none() should have returned already"; trace!("committing trade: {:?}", trade); // Compute the net change in slots of each player during the trade, to detect // out-of-space-ness before transferring any items let mut delta_slots: [isize; 2] = [0, 0]; for who in [0, 1].iter().cloned() { for (slot, quantity) in trade.offers[who].iter() { let inventory = inventories.get_mut(entities[who]).expect(invmsg); let item = match inventory.get(*slot) { Some(item) => item, None => { error!( "PendingTrade invariant violation in trade {:?}: slots offered in a trade \ should be non-empty", trade ); return TradeResult::Declined; }, }; match item.amount().cmp(&quantity) { Ordering::Less => { error!( "PendingTrade invariant violation in trade {:?}: party {} offered more of \ an item than they have", trade, who ); return TradeResult::Declined; }, Ordering::Equal => { delta_slots[who] -= 1; // exact, removes the whole stack delta_slots[1 - who] += 1; // overapproximation, assumes the stack won't merge }, Ordering::Greater => { // No change to delta_slots[who], since they have leftovers delta_slots[1 - who] += 1; // overapproximation, assumes the stack won't merge }, } } } trace!("delta_slots: {:?}", delta_slots); for who in [0, 1].iter().cloned() { // Inventories should never exceed 2^{63} slots, so the usize -> isize // conversions here should be safe let inv = inventories.get_mut(entities[who]).expect(invmsg); if inv.populated_slots() as isize + delta_slots[who] > inv.capacity() as isize { return TradeResult::NotEnoughSpace; } } let mut items = [Vec::new(), Vec::new()]; let msm = ecs.read_resource::(); for who in [0, 1].iter().cloned() { for (slot, quantity) in trade.offers[who].iter() { // Take the items one by one, to benefit from Inventory's stack handling for _ in 0..*quantity { inventories .get_mut(entities[who]) .expect(invmsg) .take(*slot, &msm) .map(|item| items[who].push(item)); } } } for who in [0, 1].iter().cloned() { if let Err(leftovers) = inventories .get_mut(entities[1 - who]) .expect(invmsg) .push_all(items[who].drain(..)) { // This should only happen if the arithmetic above for delta_slots says there's // enough space and there isn't (i.e. underapproximates) panic!( "Not enough space for all the items, leftovers are {:?}", leftovers ); } } TradeResult::Completed }