use core::{iter, mem}; use hashbrown::HashMap; use num::traits::Float; pub use vek::{geom::repr_simd::*, mat::repr_simd::column_major::Mat4, ops::*, vec::repr_simd::*}; // pub use vek::{geom::repr_c::*, mat::repr_c::column_major::Mat4, ops::*, // vec::repr_c::*}; pub fn aabb_to_points(bounds: Aabb) -> [Vec3; 8] { [ Vec3::new(bounds.min.x, bounds.min.y, bounds.min.z), Vec3::new(bounds.max.x, bounds.min.y, bounds.min.z), Vec3::new(bounds.max.x, bounds.max.y, bounds.min.z), Vec3::new(bounds.min.x, bounds.max.y, bounds.min.z), Vec3::new(bounds.min.x, bounds.min.y, bounds.max.z), Vec3::new(bounds.max.x, bounds.min.y, bounds.max.z), Vec3::new(bounds.max.x, bounds.max.y, bounds.max.z), Vec3::new(bounds.min.x, bounds.max.y, bounds.max.z), ] } /// Each Vec4 should be interpreted as reprenting plane /// equation /// /// a(x - x0) + b(y - y0) + c(z - z0) = 0, i.e. /// ax + by + cz - (a * x0 + b * y0 + c * z0) = 0, i.e. /// ax + by + cz = (a * x0 + b * y0 + c * z0), i.e. /// (letting d = a * x0 + b * y0 + c * z0) /// ax + by + cz = d /// /// where d is the distance of the plane from the origin. pub fn aabb_to_planes(bounds: Aabb) -> [Vec4; 6] { let zero = T::zero(); let one = T::one(); let bounds = bounds.map(|e| e.abs()); [ // bottom Vec4::new(zero, -one, zero, -bounds.min.y), // top Vec4::new(zero, one, zero, -bounds.max.y), // left Vec4::new(-one, zero, zero, -bounds.min.x), // right Vec4::new(one, zero, zero, -bounds.max.x), // near Vec4::new(zero, zero, -one, -bounds.min.z), // far Vec4::new(zero, zero, one, -bounds.max.z), ] } pub fn mat_mul_points>( mat: Mat4, pts: &mut [Vec3], mut do_p: impl FnMut(Vec4) -> Vec3, ) { pts.iter_mut().for_each(|p| { *p = do_p(mat * Vec4::from_point(*p)); }); } /// NOTE: Expects points computed from aabb_to_points. pub fn calc_view_frust_object(pts: &[Vec3; 8]) -> Vec>> { vec![ // near (CCW) vec![pts[0], pts[1], pts[2], pts[3]], // far (CCW) vec![pts[7], pts[6], pts[5], pts[4]], // left (CCW) vec![pts[0], pts[3], pts[7], pts[4]], // right (CCW) vec![pts[1], pts[5], pts[6], pts[2]], // bottom (CCW) vec![pts[4], pts[5], pts[1], pts[0]], // top (CCW) vec![pts[6], pts[7], pts[3], pts[2]], ] } pub fn calc_view_frustum_world_coord>( inv_proj_view: Mat4, ) -> [Vec3; 8] { let mut world_pts = aabb_to_points(Aabb { min: -Vec3::one(), max: Vec3::one(), }); mat_mul_points(inv_proj_view, &mut world_pts, |p| Vec3::from(p) / p.w); world_pts } pub fn point_plane_distance(point: Vec3, norm_dist: Vec4) -> T { norm_dist.dot(Vec4::from_point(point)) } pub fn point_before_plane(point: Vec3, plane: Vec4) -> bool { point_plane_distance(point, plane) > T::zero() } /// Returns true if and only if the final point in the polygon (i.e. the /// first point added to the new polygon) is outside the clipping plane /// (this implies that the polygon must be non-degenerate). pub fn clip_points_by_plane + core::fmt::Debug>( points: &mut Vec>, plane: Vec4, intersection_points: &mut Vec>, ) -> bool { if points.len() < 3 { return false; } // NOTE: Guaranteed to succeed since points.len() > 3. let mut current_point = points[points.len() - 1]; let intersect_plane_edge = |a, b| { let diff: Vec3<_> = b - a; let t = plane.dot(Vec4::from_direction(diff)); if t == T::zero() { None } else { let t = -(plane.dot(Vec4::from_point(a)) / t); if t < T::zero() || T::one() < t { None } else { Some(diff * t + a) } } }; let last_is_outside = point_before_plane(current_point, plane); let mut is_outside = last_is_outside; let mut old_points = Vec::with_capacity((3 * points.len()) / 2); mem::swap(&mut old_points, points); old_points.into_iter().for_each(|point| { let prev_point = mem::replace(&mut current_point, point); let before_plane = point_before_plane(current_point, plane); let prev_is_outside = mem::replace(&mut is_outside, before_plane); if !prev_is_outside { // Push previous point. points.push(prev_point); } if prev_is_outside != is_outside { if let Some(intersection_point) = intersect_plane_edge(prev_point, current_point) { // Push intersection point. intersection_points.push(intersection_point); points.push(intersection_point); } } }); last_is_outside } fn append_intersection_points( polys: &mut Vec>>, intersection_points: Vec>, tolerance: T, ) { // NOTE: We use decoded versions of each polygon, with rounded entries. // // The line segments in intersection_points are consistently ordered as follows: // each segment represents the intersection of the cutting plane with the // polygon from which the segment came. The polygon can thus be split into // two parts: the part "inside" the new surface (below the plane), and the // part "outside" it (above the plane). Thus, when oriented // with the polygon normal pointing into the camera, and the cutting plane as // the x axis, with the "outside" part on top and the "inside" part on the // bottom, there is a leftmost point (the point going from outside to // inside, counterclockwise) and a rightmost point (the point going from // inside to outside, counterclockwise). Our consistent ordering guarantees // that the leftmost point comes before the rightmost point in each line // segment. // // Why does this help us? To see that, consider the polygon adjacent to the // considered polygon which also has the same right intersection point (we // know there will be exactly one of these, because we have a solid // structure and are only considering polygons that intersect the plane // exactly two times; this means that we are ignoring polygons that intersect // the plane at just one point, which means the two polygons must share a // point, not be coplanar, and both intersect the plane; no theorem here, // but I believe there can provably be at most one such instance given that // we have at least three polygons with such a line segment). // // Now, for the adjacent polygon, repeat the above process. If the intersection // point shared by the polygons is on the right in both cases, then we can // see that the polygon's normal must be facing in the opposite direction of // the original polygon despite being adjacent. But this // should be impossible for a closed object! The same applies to the leftmost // point. // // What is the practical upshot of all this? It means that we can consistently // hash each line segment by its first point, which we can look up using the // second point of a previous line segment. This will produce a chain of // entries terminating in the original segment we looked up. As an added // bonus, by going from leftmost point to leftmost point, we also ensure that // we produce a polygon whose face is oriented counterclockwise around its // normal; this can be seen by following the right-hand rule (TODO: provide // more rigorous proof). let tol = tolerance.recip(); let make_key = move |point: Vec3| { // We use floating points rounded to tolerance in order to make our HashMap // lookups work. Otherwise we'd have to use a sorted structure, like a // btree, which wouldn't be the end of the world but would have // theoretically worse complexity. // // NOTE: Definitely non-ideal that we panic if the rounded value can't fit in an // i64... // // TODO: If necessary, let the caller specify how to hash these keys, since in // cases where we know the kind of floating point we're using we can // just cast to bits or something. point.map(|e| { (e * tol) .round() .to_i64() .expect("We don't currently try to handle floats that won't fit in an i64.") }) }; let mut lines_iter = intersection_points.chunks_exact(2).filter_map(|uv| { let u_key = make_key(uv[0]); let v = uv[1]; // NOTE: The reason we need to make sure this doesn't happen is that it's // otherwise possible for two points to hash to the same value due to // epsilon being too low. Because of the ordering mentioned previously, // we know we should *eventually* find a pair of points starting with // make_key(u) and ending with a different make_key(v) in such cases, so // we just discard all the other pairs (treating them as points rather // than lines). (u_key != make_key(v)).then_some((u_key, v)) }); if let Some((last_key, first)) = lines_iter.next() { let lines = lines_iter.collect::>(); if lines.len() < 2 { // You need at least 3 sides for a polygon return; } // NOTE: Guaranteed to terminate, provided we have no cycles besides the one // that touches every point (which should be the case given how these // points were generated). let poly_iter = iter::successors(Some(first), |&cur| lines.get(&make_key(cur)).copied()); let poly: Vec<_> = poly_iter.collect(); // We have to check to make sure we really went through the whole cycle. // TODO: Consider adaptively decreasing precision until we can make the cycle // happen. if poly.last().copied().map(make_key) == Some(last_key) { // Push the new polygon onto the object. polys.push(poly); } } } pub fn clip_object_by_plane + core::fmt::Debug>( polys: &mut Vec>>, plane: Vec4, tolerance: T, ) { let mut intersection_points = Vec::new(); polys.drain_filter(|points| { let len = intersection_points.len(); let outside_first = clip_points_by_plane(points, plane, &mut intersection_points); // Only remember intersections that are not coplanar with this side; i.e. those // that have segment length 2. if len + 2 != intersection_points.len() { intersection_points.truncate(len); } else if !outside_first { // Order the two intersection points consistently, so that, when considered // counterclockwise: // - the first point goes from the exterior of the polygon (above the cutting // plane) to its interior. // - the second point goes from the interior of the polygon (below the cutting // plane) to its exterior. // the second is always going // // This allows us to uniquely map each line segment to an "owning" point (the // one going from outside to inside), which happens to also point // the segment in a counterclockwise direction around the new // polygon normal composed of all the lines we clipped. intersection_points.swap(len, len + 1); } // Remove polygon if it was clipped away points.is_empty() }); // Add a polygon of all intersection points with the plane to close out the // object. append_intersection_points(polys, intersection_points, tolerance); } pub fn clip_object_by_aabb + core::fmt::Debug>( polys: &mut Vec>>, bounds: Aabb, tolerance: T, ) { let planes = aabb_to_planes(bounds); planes.iter().for_each(|&plane| { clip_object_by_plane(polys, plane, tolerance); }); } /// Return value is 'Some(segment)' if line segment intersects the current /// test plane. Otherwise 'None' is returned in which case the line /// segment is entirely clipped. pub fn clip_test(p: T, q: T, (u1, u2): (T, T)) -> Option<(T, T)> { if p == T::zero() { if q >= T::zero() { Some((u1, u2)) } else { None } } else { let r = q / p; if p < T::zero() { if r > u2 { None } else { Some((if r > u1 { r } else { u1 }, u2)) } } else if r < u1 { None } else { Some((u1, if r < u2 { r } else { u2 })) } } } pub fn intersection_line_aabb + core::fmt::Debug>( p: Vec3, dir: Vec3, bounds: Aabb, ) -> Option> { clip_test(-dir.z, p.z - bounds.min.z, (T::zero(), T::infinity())) .and_then(|t| clip_test(dir.z, bounds.max.z - p.z, t)) .and_then(|t| clip_test(-dir.y, p.y - bounds.min.y, t)) .and_then(|t| clip_test(dir.y, bounds.max.y - p.y, t)) .and_then(|t| clip_test(-dir.x, p.x - bounds.min.x, t)) .and_then(|t| clip_test(dir.x, bounds.max.x - p.x, t)) .and_then(|(t1, t2)| { if T::zero() <= t2 { Some(dir.mul_add(Vec3::broadcast(t2), p)) } else if T::zero() <= t1 { Some(dir.mul_add(Vec3::broadcast(t1), p)) } else { None } }) } pub fn include_object_light_volume< T: Float + MulAdd + core::fmt::Debug, I: Iterator>, >( obj: I, light_dir: Vec3, bounds: Aabb, ) -> impl Iterator> { obj.flat_map(move |pt| iter::once(pt).chain(intersection_line_aabb(pt, -light_dir, bounds))) } // NOTE: Currently specialized to skip extending to the end of the light ray, // since our light ray is already infinite. Correct code is commented out // below. pub fn calc_focused_light_volume_points + core::fmt::Debug>( inv_proj_view: Mat4, _light_dir: Vec3, scene_bounding_box: Aabb, tolerance: T, ) -> impl Iterator> { let world_pts = calc_view_frustum_world_coord(inv_proj_view); let mut world_frust_object = calc_view_frust_object(&world_pts); clip_object_by_aabb(&mut world_frust_object, scene_bounding_box, tolerance); world_frust_object.into_iter().flat_map(|e| e.into_iter()) /* include_object_light_volume( world_frust_object.into_iter().flat_map(|e| e.into_iter()), light_dir, scene_bounding_box, ) */ } /// NOTE: Will not yield useful results if pts is empty! pub fn fit_psr< T: Float + MulAdd, I: Iterator>, F: FnMut(Vec4) -> Vec4, >( mat: Mat4, pts: I, mut do_p: F, ) -> Aabb { let mut min = Vec4::broadcast(T::infinity()); let mut max = Vec4::broadcast(T::neg_infinity()); pts.map(|p| do_p(mat * Vec4::::from_point(p))) .for_each(|p| { min = Vec4::partial_min(min, p); max = Vec4::partial_max(max, p); }); Aabb { min: min.xyz(), max: max.xyz(), } }