#version 420 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include layout(location = 0) in vec3 f_pos; layout(location = 1) in vec3 f_norm; layout(location = 2) in vec4 f_col; layout(location = 3) in vec3 model_pos; layout(location = 4) in float snow_cover; layout(location = 0) out vec4 tgt_color; #include #include #include const float FADE_DIST = 32.0; void main() { #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(simple_lighting(f_pos.xyz, f_col.rgb, 1.0), 1); return; #endif vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); vec3 view_dir = -cam_to_frag; #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY) float f_alt = alt_at(f_pos.xy); #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP) float f_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0; #endif float moon_shade_frac = 1.0; DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac); vec3 surf_color = f_col.rgb; float alpha = 1.0; const float n2 = 1.5; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 my_norm = vec3(f_norm.xy, abs(f_norm.z)); vec3 voxel_norm; float my_alt = f_pos.z + focus_off.z; float f_ao = 1.0; const float VOXELIZE_DIST = 2000; float voxelize_factor = clamp(1.0 - (distance(focus_pos.xy, f_pos.xy) - view_distance.x) / VOXELIZE_DIST, 0, 0.65); vec3 cam_dir = normalize(cam_pos.xyz - f_pos.xyz); vec3 side_norm = normalize(vec3(my_norm.xy, 0)); vec3 top_norm = vec3(0, 0, 1); float side_factor = 1.0 - my_norm.z; // min(dot(vec3(0, -sign(cam_dir.y), 0), -cam_dir), dot(vec3(-sign(cam_dir.x), 0, 0), -cam_dir)) if (max(abs(my_norm.x), abs(my_norm.y)) < 0.01 || fract(my_alt) * clamp(dot(normalize(vec3(cam_dir.xy, 0)), side_norm), 0, 1) < cam_dir.z / my_norm.z) { f_ao *= mix(1.0, clamp(fract(my_alt) / length(my_norm.xy) + clamp(dot(side_norm, -cam_dir), 0, 1), 0, 1), voxelize_factor); voxel_norm = top_norm; } else { f_ao *= mix(1.0, clamp(pow(fract(my_alt), 0.5), 0, 1), voxelize_factor); if (fract(f_pos.x) * abs(my_norm.y / cam_dir.x) < fract(f_pos.y) * abs(my_norm.x / cam_dir.y)) { voxel_norm = vec3(sign(cam_dir.x), 0, 0); } else { voxel_norm = vec3(0, sign(cam_dir.y), 0); } } f_ao = min(f_ao, max(f_norm.z * 0.5 + 0.5, 0.0)); voxel_norm = mix(my_norm, voxel_norm == vec3(0.0) ? f_norm : voxel_norm, voxelize_factor); #ifdef EXPERIMENTAL_NOLODVOXELS f_ao = 1.0; voxel_norm = normalize(mix(side_norm, top_norm, cam_dir.z)); #endif vec3 emitted_light, reflected_light; // This is a bit of a hack. Because we can't find the volumetric lighting of each particle (they don't talk to the // CPU) we need to some how find an approximation of how much the sun is blocked. We do this by fading out the sun // as the particle moves underground. This isn't perfect, but it does at least mean that particles don't look like // they're exposed to the sun when in dungeons const float SUN_FADEOUT_DIST = 20.0; sun_info.block *= clamp((f_pos.z - f_alt) / SUN_FADEOUT_DIST + 1, 0, 1); // To account for prior saturation. float max_light = 0.0; vec3 cam_attenuation = vec3(1); float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1)); vec3 mu = medium.x == MEDIUM_WATER ? MU_WATER : vec3(0.0); //#if (FLUID_MODE == FLUID_MODE_SHINY) // cam_attenuation = // medium.x == MEDIUM_WATER ? compute_attenuation_point(cam_pos.xyz, view_dir, MU_WATER, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos) // : compute_attenuation_point(f_pos, -view_dir, vec3(0), fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz); //#endif max_light += get_sun_diffuse2(sun_info, moon_info, voxel_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, voxel_norm, 1.0, emitted_light, reflected_light); emitted_light *= f_ao; reflected_light *= f_ao; //max_light += lights_at(f_pos, voxel_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, voxel_norm, 1.0, emitted_light, reflected_light); vec3 side_color = mix(surf_color, vec3(0.5, 0.6, 1.0), snow_cover); vec3 top_color = mix(surf_color, surf_color * 0.3, 0.5 + snow_cover * 0.5); surf_color = mix(side_color, top_color, pow(fract(model_pos.z * 0.1), 2.0)); surf_color = illuminate(max_light, view_dir, surf_color * emitted_light, surf_color * reflected_light); // Temporarily disable particle transparency to avoid artifacts tgt_color = vec4(surf_color, 1.0 /*f_col.a*/); }