mod diffusion; mod erosion; mod location; mod map; mod path; mod util; // Reexports use self::erosion::Compute; pub use self::{ diffusion::diffusion, erosion::{ do_erosion, fill_sinks, get_drainage, get_lakes, get_multi_drainage, get_multi_rec, get_rivers, mrec_downhill, Alt, RiverData, RiverKind, }, location::Location, map::{MapConfig, MapDebug}, path::PathData, util::{ cdf_irwin_hall, downhill, get_oceans, local_cells, map_edge_factor, neighbors, uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, InverseCdf, ScaleBias, NEIGHBOR_DELTA, }, }; use crate::{ all::ForestKind, civ::Place, site::Site, util::{seed_expan, FastNoise, RandomField, StructureGen2d, LOCALITY, NEIGHBORS}, CONFIG, }; use common::{ assets, store::Id, terrain::{BiomeKind, TerrainChunkSize}, vol::RectVolSize, }; use noise::{ BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RangeFunction, RidgedMulti, Seedable, SuperSimplex, Worley, }; use num::{Float, Signed}; use rand::{Rng, SeedableRng}; use rand_chacha::ChaChaRng; use rayon::prelude::*; use serde::{Deserialize, Serialize}; use std::{ f32, f64, fs::File, io::{BufReader, BufWriter}, ops::{Add, Div, Mul, Neg, Sub}, path::PathBuf, }; use tracing::{debug, warn}; use vek::*; // NOTE: I suspect this is too small (1024 * 16 * 1024 * 16 * 8 doesn't fit in // an i32), but we'll see what happens, I guess! We could always store sizes >> // 3. I think 32 or 64 is the absolute limit though, and would require // substantial changes. Also, 1024 * 16 * 1024 * 16 is no longer // cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for // signed floats anyway) but I think that is probably less important since I // don't think we actually cast a chunk id to float, just coordinates... could // be wrong though! #[allow(clippy::identity_op)] // TODO: Pending review in #587 pub const WORLD_SIZE: Vec2 = Vec2 { x: 1024 * 1, y: 1024 * 1, }; /// A structure that holds cached noise values and cumulative distribution /// functions for the input that led to those values. See the definition of /// InverseCdf for a description of how to interpret the types of its fields. struct GenCdf { humid_base: InverseCdf, temp_base: InverseCdf, chaos: InverseCdf, alt: Box<[Alt]>, basement: Box<[Alt]>, water_alt: Box<[f32]>, dh: Box<[isize]>, /// NOTE: Until we hit 4096 × 4096, this should suffice since integers with /// an absolute value under 2^24 can be exactly represented in an f32. flux: Box<[Compute]>, pure_flux: InverseCdf, alt_no_water: InverseCdf, rivers: Box<[RiverData]>, } pub(crate) struct GenCtx { pub turb_x_nz: SuperSimplex, pub turb_y_nz: SuperSimplex, pub chaos_nz: RidgedMulti, pub alt_nz: util::HybridMulti, pub hill_nz: SuperSimplex, pub temp_nz: Fbm, // Humidity noise pub humid_nz: Billow, // Small amounts of noise for simulating rough terrain. pub small_nz: BasicMulti, pub rock_nz: HybridMulti, pub cliff_nz: HybridMulti, pub warp_nz: FastNoise, pub tree_nz: BasicMulti, pub cave_0_nz: SuperSimplex, pub cave_1_nz: SuperSimplex, pub structure_gen: StructureGen2d, pub region_gen: StructureGen2d, pub cliff_gen: StructureGen2d, pub fast_turb_x_nz: FastNoise, pub fast_turb_y_nz: FastNoise, pub town_gen: StructureGen2d, pub river_seed: RandomField, pub rock_strength_nz: Fbm, pub uplift_nz: Worley, } #[derive(Clone, Debug, Deserialize, Serialize)] pub enum FileOpts { /// If set, generate the world map and do not try to save to or load from /// file (default). Generate, /// If set, generate the world map and save the world file (path is created /// the same way screenshot paths are). Save, /// If set, load the world file from this path in legacy format (errors if /// path not found). This option may be removed at some point, since it /// only applies to maps generated before map saving was merged into /// master. LoadLegacy(PathBuf), /// If set, load the world file from this path (errors if path not found). Load(PathBuf), /// If set, look for the world file at this asset specifier (errors if /// asset is not found). /// /// NOTE: Could stand to merge this with `Load` and construct an enum that /// can handle either a PathBuf or an asset specifier, at some point. LoadAsset(String), } impl Default for FileOpts { fn default() -> Self { Self::Generate } } pub struct WorldOpts { /// Set to false to disable seeding elements during worldgen. pub seed_elements: bool, pub world_file: FileOpts, } impl Default for WorldOpts { fn default() -> Self { Self { seed_elements: true, world_file: Default::default(), } } } /// LEGACY: Remove when people stop caring. #[derive(Serialize, Deserialize)] #[repr(C)] pub struct WorldFileLegacy { /// Saved altitude height map. pub alt: Box<[Alt]>, /// Saved basement height map. pub basement: Box<[Alt]>, } /// Version of the world map intended for use in Veloren 0.5.0. #[derive(Serialize, Deserialize)] #[repr(C)] pub struct WorldMap_0_5_0 { /// Saved altitude height map. pub alt: Box<[Alt]>, /// Saved basement height map. pub basement: Box<[Alt]>, } /// Errors when converting a map to the most recent type (currently, /// shared by the various map types, but at some point we might switch to /// version-specific errors if it feels worthwhile). #[derive(Debug)] pub enum WorldFileError { /// Map size was invalid, and it can't be converted to a valid one. WorldSizeInvalid, } /// WORLD MAP. /// /// A way to store certain components between runs of map generation. Only /// intended for development purposes--no attempt is made to detect map /// invalidation or make sure that the map is synchronized with updates to /// noise-rs, changes to other parameters, etc. /// /// The map is verisoned to enable format detection between versions of Veloren, /// so that when we update the map format we don't break existing maps (or at /// least, we will try hard not to break maps between versions; if we can't /// avoid it, we can at least give a reasonable error message). /// /// NOTE: We rely somemwhat heavily on the implementation specifics of bincode /// to make sure this is backwards compatible. When adding new variants here, /// Be very careful to make sure tha the old variants are preserved in the /// correct order and with the correct names and indices, and make sure to keep /// the #[repr(u32)]! /// /// All non-legacy versions of world files should (ideally) fit in this format. /// Since the format contains a version and is designed to be extensible /// backwards-compatibly, the only reason not to use this forever would be if we /// decided to move away from BinCode, or store data across multiple files (or /// something else weird I guess). /// /// Update this when you add a new map version. #[derive(Serialize, Deserialize)] #[repr(u32)] pub enum WorldFile { Veloren0_5_0(WorldMap_0_5_0) = 0, } /// Data for the most recent map type. Update this when you add a new map /// verson. pub type ModernMap = WorldMap_0_5_0; /// The default world map. /// /// TODO: Consider using some naming convention to automatically change this /// with changing versions, or at least keep it in a constant somewhere that's /// easy to change. #[allow(clippy::redundant_static_lifetimes)] // TODO: Pending review in #587 pub const DEFAULT_WORLD_MAP: &'static str = "world.map.veloren_0_6_0_0"; impl WorldFileLegacy { #[inline] /// Idea: each map type except the latest knows how to transform /// into the the subsequent map version, and each map type including the /// latest exposes an "into_modern()" method that converts this map type /// to the modern map type. Thus, to migrate a map from an old format to a /// new format, we just need to transform the old format to the /// subsequent map version, and then call .into_modern() on that--this /// should construct a call chain that ultimately ends up with a modern /// version. pub fn into_modern(self) -> Result { if self.alt.len() != self.basement.len() || self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize { return Err(WorldFileError::WorldSizeInvalid); } let map = WorldMap_0_5_0 { alt: self.alt, basement: self.basement, }; map.into_modern() } } impl WorldMap_0_5_0 { #[inline] pub fn into_modern(self) -> Result { if self.alt.len() != self.basement.len() || self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize { return Err(WorldFileError::WorldSizeInvalid); } Ok(self) } } impl WorldFile { /// Turns map data from the latest version into a versioned WorldFile ready /// for serialization. Whenever a new map is updated, just change the /// variant we construct here to make sure we're using the latest map /// version. pub fn new(map: ModernMap) -> Self { WorldFile::Veloren0_5_0(map) } #[inline] /// Turns a WorldFile into the latest version. Whenever a new map version /// is added, just add it to this match statement. pub fn into_modern(self) -> Result { match self { WorldFile::Veloren0_5_0(map) => map.into_modern(), } } } pub struct WorldSim { pub seed: u32, /// Maximum height above sea level of any chunk in the map (not including /// post-erosion warping, cliffs, and other things like that). pub max_height: f32, pub(crate) chunks: Vec, pub(crate) locations: Vec, pub(crate) gen_ctx: GenCtx, pub rng: ChaChaRng, } impl WorldSim { #[allow(clippy::unnested_or_patterns)] // TODO: Pending review in #587 pub fn generate(seed: u32, opts: WorldOpts) -> Self { let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed)); // NOTE: Change 1.0 to 4.0, while multiplying grid_size by 4, for a 4x // improvement in world detail. You may also want to set mins_per_sec to 1 / // (4.0 * 4.0) in ./erosion.rs, in order to get a similar rate of river // formation. let continent_scale = 1.0/*4.0*/ * 5_000.0f64 .div(32.0) .mul(TerrainChunkSize::RECT_SIZE.x as f64); let rock_lacunarity = 2.0; let uplift_scale = 128.0; let uplift_turb_scale = uplift_scale / 4.0; // NOTE: Changing order will significantly change WorldGen, so try not to! let gen_ctx = GenCtx { turb_x_nz: SuperSimplex::new().set_seed(rng.gen()), turb_y_nz: SuperSimplex::new().set_seed(rng.gen()), chaos_nz: RidgedMulti::new() .set_octaves(7) .set_frequency(RidgedMulti::DEFAULT_FREQUENCY * (5_000.0 / continent_scale)) .set_seed(rng.gen()), hill_nz: SuperSimplex::new().set_seed(rng.gen()), alt_nz: util::HybridMulti::new() .set_octaves(8) .set_frequency((10_000.0 / continent_scale) as f64) // persistence = lacunarity^(-(1.0 - fractal increment)) .set_lacunarity(util::HybridMulti::DEFAULT_LACUNARITY) .set_persistence(util::HybridMulti::DEFAULT_LACUNARITY.powf(-(1.0 - 0.0))) .set_offset(0.0) .set_seed(rng.gen()), temp_nz: Fbm::new() .set_octaves(6) .set_persistence(0.5) .set_frequency(1.0 / (((1 << 6) * 64) as f64)) .set_lacunarity(2.0) .set_seed(rng.gen()), small_nz: BasicMulti::new().set_octaves(2).set_seed(rng.gen()), rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()), cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()), warp_nz: FastNoise::new(rng.gen()), tree_nz: BasicMulti::new() .set_octaves(12) .set_persistence(0.75) .set_seed(rng.gen()), cave_0_nz: SuperSimplex::new().set_seed(rng.gen()), cave_1_nz: SuperSimplex::new().set_seed(rng.gen()), structure_gen: StructureGen2d::new(rng.gen(), 32, 16), region_gen: StructureGen2d::new(rng.gen(), 400, 96), cliff_gen: StructureGen2d::new(rng.gen(), 80, 56), humid_nz: Billow::new() .set_octaves(9) .set_persistence(0.4) .set_frequency(0.2) .set_seed(rng.gen()), fast_turb_x_nz: FastNoise::new(rng.gen()), fast_turb_y_nz: FastNoise::new(rng.gen()), town_gen: StructureGen2d::new(rng.gen(), 2048, 1024), river_seed: RandomField::new(rng.gen()), rock_strength_nz: Fbm::new() .set_octaves(10) .set_lacunarity(rock_lacunarity) // persistence = lacunarity^(-(1.0 - fractal increment)) // NOTE: In paper, fractal increment is roughly 0.25. .set_persistence(rock_lacunarity.powf(-(1.0 - 0.25))) .set_frequency( 1.0 * (5_000.0 / continent_scale) / (2.0 * TerrainChunkSize::RECT_SIZE.x as f64 * 2.0.powi(10 - 1)), ) .set_seed(rng.gen()), uplift_nz: Worley::new() .set_seed(rng.gen()) .set_frequency(1.0 / (TerrainChunkSize::RECT_SIZE.x as f64 * uplift_scale)) .set_displacement(1.0) .set_range_function(RangeFunction::Euclidean), }; let river_seed = &gen_ctx.river_seed; let rock_strength_nz = &gen_ctx.rock_strength_nz; // Suppose the old world has grid spacing Δx' = Δy', new Δx = Δy. // We define grid_scale such that Δx = height_scale * Δx' ⇒ // grid_scale = Δx / Δx'. let grid_scale = 1.0f64 / 4.0/*1.0*/; // Now, suppose we want to generate a world with "similar" topography, defined // in this case as having roughly equal slopes at steady state, with the // simulation taking roughly as many steps to get to the point the // previous world was at when it finished being simulated. // // Some computations with our coupled SPL/debris flow give us (for slope S // constant) the following suggested scaling parameters to make this // work: k_fs_scale ≡ (K𝑓 / K𝑓') = grid_scale^(-2m) = // grid_scale^(-2θn) let k_fs_scale = |theta, n| grid_scale.powf(-2.0 * (theta * n) as f64); // k_da_scale ≡ (K_da / K_da') = grid_scale^(-2q) let k_da_scale = |q| grid_scale.powf(-2.0 * q); // // Some other estimated parameters are harder to come by and *much* more // dubious, not being accurate for the coupled equation. But for the SPL // only one we roughly find, for h the height at steady state and time τ // = time to steady state, with Hack's Law estimated b = 2.0 and various other // simplifying assumptions, the estimate: // height_scale ≡ (h / h') = grid_scale^(n) let height_scale = |n: f32| grid_scale.powf(n as f64) as Alt; // time_scale ≡ (τ / τ') = grid_scale^(n) let time_scale = |n: f32| grid_scale.powf(n as f64); // // Based on this estimate, we have: // delta_t_scale ≡ (Δt / Δt') = time_scale let delta_t_scale = |n: f32| time_scale(n); // alpha_scale ≡ (α / α') = height_scale^(-1) let alpha_scale = |n: f32| height_scale(n).recip() as f32; // // Slightly more dubiously (need to work out the math better) we find: // k_d_scale ≡ (K_d / K_d') = grid_scale^2 / (/*height_scale * */ time_scale) let k_d_scale = |n: f32| grid_scale.powi(2) / (/* height_scale(n) * */time_scale(n)); // epsilon_0_scale ≡ (ε₀ / ε₀') = height_scale(n) / time_scale(n) let epsilon_0_scale = |n| (height_scale(n) / time_scale(n) as Alt) as f32; // Approximate n for purposes of computation of parameters above over the whole // grid (when a chunk isn't available). let n_approx = 1.0; let max_erosion_per_delta_t = 64.0 * delta_t_scale(n_approx); let n_steps = 100; let n_small_steps = 0; let n_post_load_steps = 0; // Logistic regression. Make sure x ∈ (0, 1). let logit = |x: f64| x.ln() - (-x).ln_1p(); // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi))) let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI; // Assumes μ = 0, σ = 1 let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5; let min_epsilon = 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5); let max_epsilon = (1.0 - 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64)) .min(1.0 - f64::EPSILON as f64 * 0.5); // No NaNs in these uniform vectors, since the original noise value always // returns Some. let ((alt_base, _), (chaos, _)) = rayon::join( || { uniform_noise(|_, wposf| { // "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied // value is from -0.35 * (CONFIG.mountain_scale * 1.05) to // 0.35 * (CONFIG.mountain_scale * 0.95), but value here is from -0.3675 to // 0.3325). Some( (gen_ctx .alt_nz .get((wposf.div(10_000.0)).into_array()) .min(1.0) .max(-1.0)) .sub(0.05) .mul(0.35), ) }) }, || { uniform_noise(|_, wposf| { // From 0 to 1.6, but the distribution before the max is from -1 and 1.6, so // there is a 50% chance that hill will end up at 0.3 or // lower, and probably a very high change it will be exactly // 0. let hill = (0.0f64 + gen_ctx .hill_nz .get( (wposf .mul(32.0) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(1_500.0)) .into_array(), ) .min(1.0) .max(-1.0) .mul(1.0) + gen_ctx .hill_nz .get( (wposf .mul(32.0) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(400.0)) .into_array(), ) .min(1.0) .max(-1.0) .mul(0.3)) .add(0.3) .max(0.0); // chaos produces a value in [0.12, 1.32]. It is a meta-level factor intended // to reflect how "chaotic" the region is--how much weird // stuff is going on on this terrain. Some( ((gen_ctx .chaos_nz .get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0)) .add(1.0) .mul(0.5) // [0, 1] * [0.4, 1] = [0, 1] (but probably towards the lower end) .mul( (gen_ctx .chaos_nz .get((wposf.div(6_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .max(0.4) .min(1.0), ) // Chaos is always increased by a little when we're on a hill (but remember // that hill is 0.3 or less about 50% of the time). // [0, 1] + 0.2 * [0, 1.6] = [0, 1.32] .add(0.2 * hill) // We can't have *no* chaos! .max(0.12)) as f32, ) }) }, ); // We ignore sea level because we actually want to be relative to sea level here // and want things in CONFIG.mountain_scale units, but otherwise this is // a correct altitude calculation. Note that this is using the // "unadjusted" temperature. // // No NaNs in these uniform vectors, since the original noise value always // returns Some. let (alt_old, _) = uniform_noise(|posi, wposf| { // This is the extension upwards from the base added to some extra noise from -1 // to 1. // // The extra noise is multiplied by alt_main (the mountain part of the // extension) powered to 0.8 and clamped to [0.15, 1], to get a // value between [-1, 1] again. // // The sides then receive the sequence (y * 0.3 + 1.0) * 0.4, so we have // [-1*1*(1*0.3+1)*0.4, 1*(1*0.3+1)*0.4] = [-0.52, 0.52]. // // Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and // gen_ctx = -1, 0+-1*(0*.3+1)*0.4) and 1.52 (if alt_main = 1 and gen_ctx = 1). // Most of the points are above 0. // // Next, we add again by a sin of alt_main (between [-1, 1])^pow, getting // us (after adjusting for sign) another value between [-1, 1], and then this is // multiplied by 0.045 to get [-0.045, 0.045], which is added to [-0.4, 0.52] to // get [-0.445, 0.565]. let alt_main = { // Extension upwards from the base. A positive number from 0 to 1 curved to be // maximal at 0. Also to be multiplied by CONFIG.mountain_scale. let alt_main = (gen_ctx .alt_nz .get((wposf.div(2_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .powf(1.35); fn spring(x: f64, pow: f64) -> f64 { x.abs().powf(pow) * x.signum() } 0.0 + alt_main + (gen_ctx .small_nz .get( (wposf .mul(32.0) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(300.0)) .into_array(), ) .min(1.0) .max(-1.0)) .mul(alt_main.powf(0.8).max(/* 0.25 */ 0.15)) .mul(0.3) .add(1.0) .mul(0.4) + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045) }; // Now we can compute the final altitude using chaos. // We multiply by chaos clamped to [0.1, 1.32] to get a value between [0.03, // 2.232] for alt_pre, then multiply by CONFIG.mountain_scale and // add to the base and sea level to get an adjusted value, then // multiply the whole thing by map_edge_factor (TODO: compute final // bounds). // // [-.3675, .3325] + [-0.445, 0.565] * [0.12, 1.32]^1.2 // ~ [-.3675, .3325] + [-0.445, 0.565] * [0.07, 1.40] // = [-.3675, .3325] + ([-0.5785, 0.7345]) // = [-0.946, 1.067] Some( ((alt_base[posi].1 + alt_main.mul((chaos[posi].1 as f64).powf(1.2))) .mul(map_edge_factor(posi) as f64) .add( (CONFIG.sea_level as f64) .div(CONFIG.mountain_scale as f64) .mul(map_edge_factor(posi) as f64), ) .sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64))) as f32, ) }); // Calculate oceans. let is_ocean = get_oceans(|posi: usize| alt_old[posi].1); // NOTE: Uncomment if you want oceans to exclusively be on the border of the // map. /* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|i| map_edge_factor(i) == 0.0) .collect::>(); */ let is_ocean_fn = |posi: usize| is_ocean[posi]; let turb_wposf_div = 8.0; let n_func = |posi| { if is_ocean_fn(posi) { return 1.0; } 1.0 }; let old_height = |posi: usize| { alt_old[posi].1 * CONFIG.mountain_scale * height_scale(n_func(posi)) as f32 }; // NOTE: Needed if you wish to use the distance to the point defining the Worley // cell, not just the value within that cell. // let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true); // Recalculate altitudes without oceans. // NaNs in these uniform vectors wherever is_ocean_fn returns true. let (alt_old_no_ocean, _) = uniform_noise(|posi, _| { if is_ocean_fn(posi) { None } else { Some(old_height(posi)) } }); let (uplift_uniform, _) = uniform_noise(|posi, _wposf| { if is_ocean_fn(posi) { None } else { let oheight = alt_old_no_ocean[posi].0 as f64 - 0.5; let height = (oheight + 0.5).powf(2.0); Some(height) } }); let alt_old_min_uniform = 0.0; let alt_old_max_uniform = 1.0; let inv_func = |x: f64| x; let alt_exp_min_uniform = inv_func(min_epsilon); let alt_exp_max_uniform = inv_func(max_epsilon); let erosion_factor = |x: f64| { (inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform) }; let rock_strength_div_factor = (2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0; let theta_func = |_posi| 0.4; let kf_func = { |posi| { let kf_scale_i = k_fs_scale(theta_func(posi), n_func(posi)) as f64; if is_ocean_fn(posi) { return 1.0e-4 * kf_scale_i; } let kf_i = // kf = 1.5e-4: high-high (plateau [fan sediment]) // kf = 1e-4: high (plateau) // kf = 2e-5: normal (dike [unexposed]) // kf = 1e-6: normal-low (dike [exposed]) // kf = 2e-6: low (mountain) // -- // kf = 2.5e-7 to 8e-7: very low (Cordonnier papers on plate tectonics) // ((1.0 - uheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) as f32 // // ACTUAL recorded values worldwide: much lower... 1.0e-6 ; kf_i * kf_scale_i } }; let kd_func = { |posi| { let n = n_func(posi); let kd_scale_i = k_d_scale(n); if is_ocean_fn(posi) { let kd_i = 1.0e-2 / 4.0; return kd_i * kd_scale_i; } // kd = 1e-1: high (mountain, dike) // kd = 1.5e-2: normal-high (plateau [fan sediment]) // kd = 1e-2: normal (plateau) let kd_i = 1.0e-2 / 4.0; kd_i * kd_scale_i } }; let g_func = |posi| { if map_edge_factor(posi) == 0.0 { return 0.0; } // G = d* v_s / p_0, where // v_s is the settling velocity of sediment grains // p_0 is the mean precipitation rate // d* is the sediment concentration ratio (between concentration near riverbed // interface, and average concentration over the water column). // d* varies with Rouse number which defines relative contribution of bed, // suspended, and washed loads. // // G is typically on the order of 1 or greater. However, we are only guaranteed // to converge for G ≤ 1, so we keep it in the chaos range of [0.12, // 1.32]. 1.0 }; let epsilon_0_func = |posi| { // epsilon_0_scale is roughly [using Hack's Law with b = 2 and SPL without // debris flow or hillslopes] equal to the ratio of the old to new // area, to the power of -n_i. let epsilon_0_scale_i = epsilon_0_scale(n_func(posi)); if is_ocean_fn(posi) { // marine: ε₀ = 2.078e-3 let epsilon_0_i = 2.078e-3 / 4.0; return epsilon_0_i * epsilon_0_scale_i; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .mul(5_000.0 / continent_scale) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); let turb_wposf = wposf + turb; let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let wposf3 = Vec3::new( wposf.x, wposf.y, uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor, ); let rock_strength = gen_ctx .rock_strength_nz .get(wposf3.into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let center = 0.4; let dmin = center - 0.05; let dmax = center + 0.05; let log_odds = |x: f64| logit(x) - logit(center); let ustrength = logistic_cdf( 1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7)) + 1.0 * log_odds(uheight.min(dmax).max(dmin)), ); // marine: ε₀ = 2.078e-3 // San Gabriel Mountains: ε₀ = 3.18e-4 // Oregon Coast Range: ε₀ = 2.68e-4 // Frogs Hollow (peak production = 0.25): ε₀ = 1.41e-4 // Point Reyes: ε₀ = 8.1e-5 // Nunnock River (fractured granite, least weathered?): ε₀ = 5.3e-5 let epsilon_0_i = ((1.0 - ustrength) * (2.078e-3 - 5.3e-5) + 5.3e-5) as f32 / 4.0; epsilon_0_i * epsilon_0_scale_i }; let alpha_func = |posi| { let alpha_scale_i = alpha_scale(n_func(posi)); if is_ocean_fn(posi) { // marine: α = 3.7e-2 return 3.7e-2 * alpha_scale_i; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .mul(5_000.0 / continent_scale) .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); let turb_wposf = wposf + turb; let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let wposf3 = Vec3::new( wposf.x, wposf.y, uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor, ); let rock_strength = gen_ctx .rock_strength_nz .get(wposf3.into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let center = 0.4; let dmin = center - 0.05; let dmax = center + 0.05; let log_odds = |x: f64| logit(x) - logit(center); let ustrength = logistic_cdf( 1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7)) + 1.0 * log_odds(uheight.min(dmax).max(dmin)), ); // Frog Hollow (peak production = 0.25): α = 4.2e-2 // San Gabriel Mountains: α = 3.8e-2 // marine: α = 3.7e-2 // Oregon Coast Range: α = 3e-2 // Nunnock river (fractured granite, least weathered?): α = 2e-3 // Point Reyes: α = 1.6e-2 // The stronger the rock, the faster the decline in soil production. let alpha_i = (ustrength * (4.2e-2 - 1.6e-2) + 1.6e-2) as f32; alpha_i * alpha_scale_i }; let uplift_fn = |posi| { if is_ocean_fn(posi) { return 0.0; } let height = (uplift_uniform[posi].1 - alt_old_min_uniform) as f64 / (alt_old_max_uniform - alt_old_min_uniform) as f64; let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon); let height = erosion_factor(height); assert!(height >= 0.0); assert!(height <= 1.0); // u = 1e-3: normal-high (dike, mountain) // u = 5e-4: normal (mid example in Yuan, average mountain uplift) // u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ // 0.05). u = 0: low (plateau [fan, altitude = 0.0]) let height = height.mul(max_erosion_per_delta_t); height as f64 }; let alt_func = |posi| { if is_ocean_fn(posi) { old_height(posi) } else { (old_height(posi) as f64 / CONFIG.mountain_scale as f64) as f32 - 0.5 } }; // Parse out the contents of various map formats into the values we need. let parsed_world_file = (|| { let map = match opts.world_file { FileOpts::LoadLegacy(ref path) => { let file = match File::open(path) { Ok(file) => file, Err(e) => { warn!(?e, ?path, "Couldn't read path for maps"); return None; }, }; let reader = BufReader::new(file); let map: WorldFileLegacy = match bincode::deserialize_from(reader) { Ok(map) => map, Err(e) => { warn!( ?e, "Couldn't parse legacy map. Maybe you meant to try a regular \ load?" ); return None; }, }; map.into_modern() }, FileOpts::Load(ref path) => { let file = match File::open(path) { Ok(file) => file, Err(e) => { warn!(?e, ?path, "Couldn't read path for maps"); return None; }, }; let reader = BufReader::new(file); let map: WorldFile = match bincode::deserialize_from(reader) { Ok(map) => map, Err(e) => { warn!( ?e, "Couldn't parse modern map. Maybe you meant to try a legacy load?" ); return None; }, }; map.into_modern() }, FileOpts::LoadAsset(ref specifier) => { let reader = match assets::load_file(specifier, &["bin"]) { Ok(reader) => reader, Err(e) => { warn!(?e, ?specifier, "Couldn't read asset specifier for maps",); return None; }, }; let map: WorldFile = match bincode::deserialize_from(reader) { Ok(map) => map, Err(e) => { warn!( ?e, "Couldn't parse modern map. Maybe you meant to try a legacy load?" ); return None; }, }; map.into_modern() }, FileOpts::Generate | FileOpts::Save => return None, }; match map { Ok(map) => Some(map), Err(e) => { match e { WorldFileError::WorldSizeInvalid => { warn!("World size of map is invalid."); }, } None }, } })(); // Perform some erosion. let (alt, basement) = if let Some(map) = parsed_world_file { (map.alt, map.basement) } else { let (alt, basement) = do_erosion( max_erosion_per_delta_t as f32, n_steps, &river_seed, // varying conditions &rock_strength_nz, // initial conditions alt_func, alt_func, is_ocean_fn, // empirical constants uplift_fn, n_func, theta_func, kf_func, kd_func, g_func, epsilon_0_func, alpha_func, // scaling factors height_scale, k_d_scale(n_approx), k_da_scale, ); // Quick "small scale" erosion cycle in order to lower extreme angles. do_erosion( 1.0f32, n_small_steps, &river_seed, &rock_strength_nz, |posi| alt[posi] as f32, |posi| basement[posi] as f32, is_ocean_fn, |posi| uplift_fn(posi) * (1.0 / max_erosion_per_delta_t), n_func, theta_func, kf_func, kd_func, g_func, epsilon_0_func, alpha_func, height_scale, k_d_scale(n_approx), k_da_scale, ) }; // Save map, if necessary. // NOTE: We wll always save a map with latest version. let map = WorldFile::new(ModernMap { alt, basement }); (|| { if let FileOpts::Save = opts.world_file { use std::time::SystemTime; // Check if folder exists and create it if it does not let mut path = PathBuf::from("./maps"); if !path.exists() { if let Err(e) = std::fs::create_dir(&path) { warn!(?e, ?path, "Couldn't create folder for map"); return; } } path.push(format!( // TODO: Work out a nice bincode file extension. "map_{}.bin", SystemTime::now() .duration_since(SystemTime::UNIX_EPOCH) .map(|d| d.as_millis()) .unwrap_or(0) )); let file = match File::create(path.clone()) { Ok(file) => file, Err(e) => { warn!(?e, ?path, "Couldn't create file for maps"); return; }, }; let writer = BufWriter::new(file); if let Err(e) = bincode::serialize_into(writer, &map) { warn!(?e, "Couldn't write map"); } } })(); // Skip validation--we just performed a no-op conversion for this map, so it had // better be valid! let ModernMap { alt, basement } = map.into_modern().unwrap(); // Additional small-scale eroson after map load, only used during testing. let (alt, basement) = if n_post_load_steps == 0 { (alt, basement) } else { do_erosion( 1.0f32, n_post_load_steps, &river_seed, &rock_strength_nz, |posi| alt[posi] as f32, |posi| basement[posi] as f32, is_ocean_fn, |posi| uplift_fn(posi) * (1.0 / max_erosion_per_delta_t), n_func, theta_func, kf_func, kd_func, g_func, epsilon_0_func, alpha_func, height_scale, k_d_scale(n_approx), k_da_scale, ) }; let is_ocean = get_oceans(|posi| alt[posi]); let is_ocean_fn = |posi: usize| is_ocean[posi]; let mut dh = downhill(|posi| alt[posi], is_ocean_fn); let (boundary_len, indirection, water_alt_pos, maxh) = get_lakes(|posi| alt[posi], &mut dh); debug!(?maxh, "Max height"); let (mrec, mstack, mwrec) = { let mut wh = vec![0.0; WORLD_SIZE.x * WORLD_SIZE.y]; get_multi_rec( |posi| alt[posi], &dh, &water_alt_pos, &mut wh, WORLD_SIZE.x, WORLD_SIZE.y, TerrainChunkSize::RECT_SIZE.x as Compute, TerrainChunkSize::RECT_SIZE.y as Compute, maxh, ) }; let flux_old = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len); let flux_rivers = get_drainage(&water_alt_pos, &dh, boundary_len); // TODO: Make rivers work with multi-direction flux as well. // let flux_rivers = flux_old.clone(); let water_height_initial = |chunk_idx| { let indirection_idx = indirection[chunk_idx]; // Find the lake this point is flowing into. let lake_idx = if indirection_idx < 0 { chunk_idx } else { indirection_idx as usize }; let chunk_water_alt = if dh[lake_idx] < 0 { // This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea // level) or part of a lake that flows directly into the ocean. // In the former case, water is at sea level so we just return // 0.0. In the latter case, the lake bottom must have been a // boundary node in the first place--meaning this node flows directly // into the ocean. In that case, its lake bottom is ocean, meaning its water is // also at sea level. Thus, we return 0.0 in both cases. 0.0 } else { // This chunk is draining into a body of water that isn't the ocean (i.e., a // lake). Then we just need to find the pass height of the // surrounding lake in order to figure out the initial water // height (which fill_sinks will then extend to make // sure it fills the entire basin). // Find the height of "our" side of the pass (the part of it that drains into // this chunk's lake). let pass_idx = -indirection[lake_idx] as usize; let pass_height_i = alt[pass_idx]; // Find the pass this lake is flowing into (i.e. water at the lake bottom gets // pushed towards the point identified by pass_idx). let neighbor_pass_idx = dh[pass_idx/*lake_idx*/]; // Find the height of the pass into which our lake is flowing. let pass_height_j = alt[neighbor_pass_idx as usize]; // Find the maximum of these two heights. // Use the pass height as the initial water altitude. pass_height_i.max(pass_height_j) /*pass_height*/ }; // Use the maximum of the pass height and chunk height as the parameter to // fill_sinks. let chunk_alt = alt[chunk_idx]; chunk_alt.max(chunk_water_alt) }; // NOTE: If for for some reason you need to avoid the expensive `fill_sinks` // step here, and we haven't yet replaced it with a faster version, you // may comment out this line and replace it with the commented-out code // below; however, there are no guarantees that this // will work correctly. let water_alt = fill_sinks(water_height_initial, is_ocean_fn); /* let water_alt = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|posi| water_height_initial(posi)) .collect::>(); */ let rivers = get_rivers(&water_alt_pos, &water_alt, &dh, &indirection, &flux_rivers); let water_alt = indirection .par_iter() .enumerate() .map(|(chunk_idx, &indirection_idx)| { // Find the lake this point is flowing into. let lake_idx = if indirection_idx < 0 { chunk_idx } else { indirection_idx as usize }; if dh[lake_idx] < 0 { // This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea // level) or part of a lake that flows directly into the // ocean. In the former case, water is at sea level so we // just return 0.0. In the latter case, the lake bottom must // have been a boundary node in the first place--meaning this node flows // directly into the ocean. In that case, its lake bottom // is ocean, meaning its water is also at sea level. Thus, // we return 0.0 in both cases. 0.0 } else { // This is not flowing into the ocean, so we can use the existing water_alt. water_alt[chunk_idx] as f32 } }) .collect::>() .into_boxed_slice(); let is_underwater = |chunk_idx: usize| match rivers[chunk_idx].river_kind { Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true, Some(RiverKind::River { .. }) => false, // TODO: inspect width None => false, }; // Check whether any tiles around this tile are not water (since Lerp will // ensure that they are included). let pure_water = |posi: usize| { let pos = uniform_idx_as_vec2(posi); for x in pos.x - 1..(pos.x + 1) + 1 { for y in pos.y - 1..(pos.y + 1) + 1 { if x >= 0 && y >= 0 && x < WORLD_SIZE.x as i32 && y < WORLD_SIZE.y as i32 { let posi = vec2_as_uniform_idx(Vec2::new(x, y)); if !is_underwater(posi) { return false; } } } } true }; // NaNs in these uniform vectors wherever pure_water() returns true. let (((alt_no_water, _), (pure_flux, _)), ((temp_base, _), (humid_base, _))) = rayon::join( || { rayon::join( || { uniform_noise(|posi, _| { if pure_water(posi) { None } else { // A version of alt that is uniform over *non-water* (or // land-adjacent water) chunks. Some(alt[posi] as f32) } }) }, || { uniform_noise(|posi, _| { if pure_water(posi) { None } else { Some(flux_old[posi]) } }) }, ) }, || { rayon::join( || { uniform_noise(|posi, wposf| { if pure_water(posi) { None } else { // -1 to 1. Some(gen_ctx.temp_nz.get((wposf).into_array()) as f32) } }) }, || { uniform_noise(|posi, wposf| { // Check whether any tiles around this tile are water. if pure_water(posi) { None } else { // 0 to 1, hopefully. Some( (gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32) .add(1.0) .mul(0.5), ) } }) }, ) }, ); let gen_cdf = GenCdf { humid_base, temp_base, chaos, alt, basement, water_alt, dh, flux: flux_old, pure_flux, alt_no_water, rivers, }; let chunks = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|i| SimChunk::generate(i, &gen_ctx, &gen_cdf)) .collect::>(); let mut this = Self { seed, max_height: maxh as f32, chunks, locations: Vec::new(), gen_ctx, rng, }; if opts.seed_elements { this.seed_elements(); } this } pub fn get_size(&self) -> Vec2 { WORLD_SIZE.map(|e| e as u32) } /// Draw a map of the world based on chunk information. Returns a buffer of /// u32s. pub fn get_map(&self) -> Vec { let mut v = vec![0u32; WORLD_SIZE.x * WORLD_SIZE.y]; // TODO: Parallelize again. MapConfig { gain: self.max_height, ..MapConfig::default() } .generate(&self, |pos, (r, g, b, a)| { v[pos.y * WORLD_SIZE.x + pos.x] = u32::from_le_bytes([r, g, b, a]); }); v } /// Prepare the world for simulation pub fn seed_elements(&mut self) { let mut rng = self.rng.clone(); let cell_size = 16; let grid_size = WORLD_SIZE / cell_size; let loc_count = 100; let mut loc_grid = vec![None; grid_size.product()]; let mut locations = Vec::new(); // Seed the world with some locations (0..loc_count).for_each(|_| { let cell_pos = Vec2::new( self.rng.gen::() % grid_size.x, self.rng.gen::() % grid_size.y, ); let wpos = (cell_pos * cell_size + cell_size / 2) .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as i32 * sz as i32 + sz as i32 / 2 }); locations.push(Location::generate(wpos, &mut rng)); loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1); }); // Find neighbours let mut loc_clone = locations .iter() .map(|l| l.center) .enumerate() .collect::>(); // NOTE: We assume that usize is 8 or fewer bytes. (0..locations.len()).for_each(|i| { let pos = locations[i].center.map(|e| e as i64); loc_clone.sort_by_key(|(_, l)| l.map(|e| e as i64).distance_squared(pos)); loc_clone.iter().skip(1).take(2).for_each(|(j, _)| { locations[i].neighbours.insert(*j as u64); locations[*j].neighbours.insert(i as u64); }); }); // Simulate invasion! let invasion_cycles = 25; (0..invasion_cycles).for_each(|_| { (0..grid_size.y).for_each(|j| { (0..grid_size.x).for_each(|i| { if loc_grid[j * grid_size.x + i].is_none() { const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1]; let idx = self.rng.gen::() % 4; let new_i = i as i32 + R_COORDS[idx]; let new_j = j as i32 + R_COORDS[idx + 1]; if new_i >= 0 && new_j >= 0 { let loc = Vec2::new(new_i as usize, new_j as usize); loc_grid[j * grid_size.x + i] = loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten(); } } }); }); }); // Place the locations onto the world /* let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2); self.chunks .par_iter_mut() .enumerate() .for_each(|(ij, chunk)| { let chunk_pos = uniform_idx_as_vec2(ij); let i = chunk_pos.x as usize; let j = chunk_pos.y as usize; let block_pos = Vec2::new( chunk_pos.x * TerrainChunkSize::RECT_SIZE.x as i32, chunk_pos.y * TerrainChunkSize::RECT_SIZE.y as i32, ); let _cell_pos = Vec2::new(i / cell_size, j / cell_size); // Find the distance to each region let near = gen.get(chunk_pos); let mut near = near .iter() .map(|(pos, seed)| RegionInfo { chunk_pos: *pos, block_pos: pos .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e * sz as i32), dist: (pos - chunk_pos).map(|e| e as f32).magnitude(), seed: *seed, }) .collect::>(); // Sort regions based on distance near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap()); let nearest_cell_pos = near[0].chunk_pos; if nearest_cell_pos.x >= 0 && nearest_cell_pos.y >= 0 { let nearest_cell_pos = nearest_cell_pos.map(|e| e as usize) / cell_size; chunk.location = loc_grid .get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x) .cloned() .unwrap_or(None) .map(|loc_idx| LocationInfo { loc_idx, near }); } }); */ // Create waypoints const WAYPOINT_EVERY: usize = 16; let this = &self; let waypoints = (0..WORLD_SIZE.x) .step_by(WAYPOINT_EVERY) .map(|i| { (0..WORLD_SIZE.y) .step_by(WAYPOINT_EVERY) .map(move |j| (i, j)) }) .flatten() .collect::>() .into_par_iter() .filter_map(|(i, j)| { let mut pos = Vec2::new(i as i32, j as i32); let mut chunk = this.get(pos)?; // Slide the waypoints down hills const MAX_ITERS: usize = 64; for _ in 0..MAX_ITERS { let downhill_pos = match chunk.downhill { Some(downhill) => { downhill.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / (sz as i32)) }, None => return Some(pos), }; let new_chunk = this.get(downhill_pos)?; const SLIDE_THRESHOLD: f32 = 5.0; if new_chunk.is_underwater() || new_chunk.alt + SLIDE_THRESHOLD < chunk.alt { break; } else { chunk = new_chunk; pos = downhill_pos; } } Some(pos) }) .collect::>(); for waypoint in waypoints { self.get_mut(waypoint).map(|sc| sc.contains_waypoint = true); } self.rng = rng; self.locations = locations; } pub fn get(&self, chunk_pos: Vec2) -> Option<&SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&self.chunks[vec2_as_uniform_idx(chunk_pos)]) } else { None } } pub fn get_gradient_approx(&self, chunk_pos: Vec2) -> Option { let a = self.get(chunk_pos)?; if let Some(downhill) = a.downhill { let b = self.get(downhill.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / (sz as i32)))?; Some((a.alt - b.alt).abs() / TerrainChunkSize::RECT_SIZE.x as f32) } else { Some(0.0) } } pub fn get_alt_approx(&self, wpos: Vec2) -> Option { self.get_interpolated(wpos, |chunk| chunk.alt) } pub fn get_wpos(&self, wpos: Vec2) -> Option<&SimChunk> { self.get(wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e.div_euclid(sz as i32) })) } pub fn get_mut(&mut self, chunk_pos: Vec2) -> Option<&mut SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&mut self.chunks[vec2_as_uniform_idx(chunk_pos)]) } else { None } } pub fn get_base_z(&self, chunk_pos: Vec2) -> Option { if !chunk_pos .map2(WORLD_SIZE, |e, sz| e > 0 && e < sz as i32 - 2) .reduce_and() { return None; } let chunk_idx = vec2_as_uniform_idx(chunk_pos); local_cells(chunk_idx) .flat_map(|neighbor_idx| { let neighbor_pos = uniform_idx_as_vec2(neighbor_idx); let neighbor_chunk = self.get(neighbor_pos); let river_kind = neighbor_chunk.and_then(|c| c.river.river_kind); let has_water = river_kind.is_some() && river_kind != Some(RiverKind::Ocean); if (neighbor_pos - chunk_pos).reduce_partial_max() <= 1 || has_water { neighbor_chunk.map(|c| c.get_base_z()) } else { None } }) .fold(None, |a: Option, x| a.map(|a| a.min(x)).or(Some(x))) } pub fn get_interpolated(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Add + Mul, F: FnMut(&SimChunk) -> T, { let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { let x2 = x * x; // Catmull-Rom splines let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5; let co1 = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } /// M. Steffen splines. /// /// A more expensive cubic interpolation function that can preserve /// monotonicity between points. This is useful if you rely on relative /// differences between endpoints being preserved at all interior /// points. For example, we use this with riverbeds (and water /// height on along rivers) to maintain the invariant that the rivers always /// flow downhill at interior points (not just endpoints), without /// needing to flatten out the river. pub fn get_interpolated_monotone(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Signed + Float + Add + Mul, F: FnMut(&SimChunk) -> T, { // See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf // // Note that these are only guaranteed monotone in one dimension; fortunately, // that is sufficient for our purposes. let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); let secant = |b: T, c: T| c - b; let parabola = |a: T, c: T| -a * 0.5 + c * 0.5; let slope = |_a: T, _b: T, _c: T, s_a: T, s_b: T, p_b: T| { // ((b - a).signum() + (c - b).signum()) * s (s_a.signum() + s_b.signum()) * (s_a.abs().min(s_b.abs()).min(p_b.abs() * 0.5)) }; let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { // Compute secants. let s_a = secant(a, b); let s_b = secant(b, c); let s_c = secant(c, d); // Computing slopes from parabolas. let p_b = parabola(a, c); let p_c = parabola(b, d); // Get slopes (setting distance between neighbors to 1.0). let slope_b = slope(a, b, c, s_a, s_b, p_b); let slope_c = slope(b, c, d, s_b, s_c, p_c); let x2 = x * x; // Interpolating splines. let co0 = slope_b + slope_c - s_b * 2.0; // = a * -0.5 + c * 0.5 + b * -0.5 + d * 0.5 - 2 * (c - b) // = a * -0.5 + b * 1.5 - c * 1.5 + d * 0.5; let co1 = s_b * 3.0 - slope_b * 2.0 - slope_c; // = (3.0 * (c - b) - 2.0 * (a * -0.5 + c * 0.5) - (b * -0.5 + d * 0.5)) // = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = slope_b; // = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } /// Bilinear interpolation. /// /// Linear interpolation in both directions (i.e. quadratic interpolation). pub fn get_interpolated_bilinear(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Signed + Float + Add + Mul, F: FnMut(&SimChunk) -> T, { // (i) Find downhill for all four points. // (ii) Compute distance from each downhill point and do linear interpolation on // their heights. (iii) Compute distance between each neighboring point // and do linear interpolation on their distance-interpolated // heights. // See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf // // Note that these are only guaranteed monotone in one dimension; fortunately, // that is sufficient for our purposes. let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); // Orient the chunk in the direction of the most downhill point of the four. If // there is no "most downhill" point, then we don't care. let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q); let p0 = self.get(x0)?; let y0 = f(p0); let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q); let p1 = self.get(x1)?; let y1 = f(p1); let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q); let p2 = self.get(x2)?; let y2 = f(p2); let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q); let p3 = self.get(x3)?; let y3 = f(p3); let z0 = y0 .mul(1.0 - pos.x.fract() as f32) .mul(1.0 - pos.y.fract() as f32); let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32); let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32); let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32); Some(z0 + z1 + z2 + z3) } pub fn get_nearest_path(&self, wpos: Vec2) -> Option<(f32, Vec2)> { let chunk_pos = wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e.div_euclid(sz as i32) }); let get_chunk_centre = |chunk_pos: Vec2| { chunk_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e * sz as i32 + sz as i32 / 2 }) }; LOCALITY .iter() .filter_map(|ctrl| { let chunk = self.get(chunk_pos + *ctrl)?; let ctrl_pos = get_chunk_centre(chunk_pos + *ctrl).map(|e| e as f32) + chunk.path.offset; let chunk_connections = chunk.path.neighbors.count_ones(); if chunk_connections == 0 { return None; } let (start_pos, _start_idx) = if chunk_connections != 2 { (ctrl_pos, None) } else { let (start_idx, start_rpos) = NEIGHBORS .iter() .copied() .enumerate() .find(|(i, _)| chunk.path.neighbors & (1 << *i as u8) != 0) .unwrap(); let start_pos_chunk = chunk_pos + *ctrl + start_rpos; ( get_chunk_centre(start_pos_chunk).map(|e| e as f32) + self.get(start_pos_chunk)?.path.offset, Some(start_idx), ) }; Some( NEIGHBORS .iter() .enumerate() .filter(move |(i, _)| chunk.path.neighbors & (1 << *i as u8) != 0) .filter_map(move |(_, end_rpos)| { let end_pos_chunk = chunk_pos + *ctrl + end_rpos; let end_pos = get_chunk_centre(end_pos_chunk).map(|e| e as f32) + self.get(end_pos_chunk)?.path.offset; let bez = QuadraticBezier2 { start: (start_pos + ctrl_pos) / 2.0, ctrl: ctrl_pos, end: (end_pos + ctrl_pos) / 2.0, }; let nearest_interval = bez .binary_search_point_by_steps(wpos.map(|e| e as f32), 16, 0.001) .0 .clamped(0.0, 1.0); let pos = bez.evaluate(nearest_interval); let dist_sqrd = pos.distance_squared(wpos.map(|e| e as f32)); Some((dist_sqrd, pos)) }), ) }) .flatten() .min_by_key(|(dist_sqrd, _)| (dist_sqrd * 1024.0) as i32) .map(|(dist, pos)| (dist.sqrt(), pos)) } } #[derive(Debug)] pub struct SimChunk { pub chaos: f32, pub alt: f32, pub basement: f32, pub water_alt: f32, pub downhill: Option>, pub flux: f32, pub temp: f32, pub humidity: f32, pub rockiness: f32, pub is_cliffs: bool, pub near_cliffs: bool, pub tree_density: f32, pub forest_kind: ForestKind, pub spawn_rate: f32, pub river: RiverData, pub warp_factor: f32, pub sites: Vec, pub place: Option>, pub path: PathData, pub contains_waypoint: bool, } #[derive(Copy, Clone)] pub struct RegionInfo { pub chunk_pos: Vec2, pub block_pos: Vec2, pub dist: f32, pub seed: u32, } impl SimChunk { #[allow(clippy::if_same_then_else)] // TODO: Pending review in #587 #[allow(clippy::unnested_or_patterns)] // TODO: Pending review in #587 fn generate(posi: usize, gen_ctx: &GenCtx, gen_cdf: &GenCdf) -> Self { let pos = uniform_idx_as_vec2(posi); let wposf = (pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)).map(|e| e as f64); let _map_edge_factor = map_edge_factor(posi); let (_, chaos) = gen_cdf.chaos[posi]; let alt_pre = gen_cdf.alt[posi] as f32; let basement_pre = gen_cdf.basement[posi] as f32; let water_alt_pre = gen_cdf.water_alt[posi]; let downhill_pre = gen_cdf.dh[posi]; let flux = gen_cdf.flux[posi] as f32; let river = gen_cdf.rivers[posi].clone(); // Can have NaNs in non-uniform part where pure_water returned true. We just // test one of the four in order to find out whether this is the case. let (flux_uniform, /* flux_non_uniform */ _) = gen_cdf.pure_flux[posi]; let (alt_uniform, _) = gen_cdf.alt_no_water[posi]; let (temp_uniform, _) = gen_cdf.temp_base[posi]; let (humid_uniform, _) = gen_cdf.humid_base[posi]; /* // Vertical difference from the equator (NOTE: "uniform" with much lower granularity than // other uniform quantities, but hopefully this doesn't matter *too* much--if it does, we // can always add a small x component). // // Not clear that we want this yet, let's see. let latitude_uniform = (pos.y as f32 / WORLD_SIZE.y as f32).sub(0.5).mul(2.0); // Even less granular--if this matters we can make the sign affect the quantiy slightly. let abs_lat_uniform = latitude_uniform.abs(); */ // Take the weighted average of our randomly generated base humidity, and the // calculated water flux over this point in order to compute humidity. const HUMID_WEIGHTS: [f32; 2] = [2.0, 1.0]; let humidity = cdf_irwin_hall(&HUMID_WEIGHTS, [humid_uniform, flux_uniform]); // We also correlate temperature negatively with altitude and absolute latitude, // using different weighting than we use for humidity. const TEMP_WEIGHTS: [f32; 2] = [/* 1.5, */ 1.0, 2.0]; let temp = cdf_irwin_hall( &TEMP_WEIGHTS, [ temp_uniform, 1.0 - alt_uniform, /* 1.0 - abs_lat_uniform*/ ], ) // Convert to [-1, 1] .sub(0.5) .mul(2.0); let mut alt = CONFIG.sea_level.add(alt_pre); let basement = CONFIG.sea_level.add(basement_pre); let water_alt = CONFIG.sea_level.add(water_alt_pre); let downhill = if downhill_pre == -2 { None } else if downhill_pre < 0 { panic!("Uh... shouldn't this never, ever happen?"); } else { Some( uniform_idx_as_vec2(downhill_pre as usize) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32), ) }; //let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + // chaos * 0.2; let cliff = 0.0; // Disable cliffs // Logistic regression. Make sure x ∈ (0, 1). let logit = |x: f64| x.ln() - x.neg().ln_1p(); // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi))) let logistic_2_base = 3.0f64.sqrt().mul(f64::consts::FRAC_2_PI); // Assumes μ = 0, σ = 1 let logistic_cdf = |x: f64| x.div(logistic_2_base).tanh().mul(0.5).add(0.5); let is_underwater = match river.river_kind { Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true, Some(RiverKind::River { .. }) => false, // TODO: inspect width None => false, }; let river_xy = Vec2::new(river.velocity.x, river.velocity.y).magnitude(); let river_slope = river.velocity.z / river_xy; match river.river_kind { Some(RiverKind::River { cross_section }) => { if cross_section.x >= 0.5 && cross_section.y >= CONFIG.river_min_height { /* println!( "Big area! Pos area: {:?}, River data: {:?}, slope: {:?}", wposf, river, river_slope ); */ } if river_slope.abs() >= 0.25 && cross_section.x >= 1.0 { let pos_area = wposf; let river_data = &river; debug!(?pos_area, ?river_data, ?river_slope, "Big waterfall!",); } }, Some(RiverKind::Lake { .. }) => { // Forces lakes to be downhill from the land around them, and adds some noise to // the lake bed to make sure it's not too flat. let lake_bottom_nz = (gen_ctx.small_nz.get((wposf.div(20.0)).into_array()) as f32) .max(-1.0) .min(1.0) .mul(3.0); alt = alt.min(water_alt - 5.0) + lake_bottom_nz; }, _ => {}, } // No trees in the ocean, with zero humidity (currently), or directly on // bedrock. let tree_density = if is_underwater { 0.0 } else { let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array())) .mul(1.5) .add(1.0) .mul(0.5) .mul(1.2 - chaos as f64 * 0.95) .add(0.05) .max(0.0) .min(1.0); // Tree density should go (by a lot) with humidity. if humidity <= 0.0 || tree_density <= 0.0 { 0.0 } else if humidity >= 1.0 || tree_density >= 1.0 { 1.0 } else { // Weighted logit sum. logistic_cdf(logit(humidity as f64) + 0.5 * logit(tree_density)) } // rescale to (-0.95, 0.95) .sub(0.5) .mul(0.95) .add(0.5) } as f32; Self { chaos, flux, alt, basement: basement.min(alt), water_alt, downhill, temp, humidity, rockiness: if true { (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32) .sub(0.1) .mul(1.3) .max(0.0) } else { 0.0 }, is_cliffs: cliff > 0.5 && !is_underwater, near_cliffs: cliff > 0.2, tree_density, forest_kind: if temp > CONFIG.temperate_temp { if temp > CONFIG.desert_temp { if humidity > CONFIG.jungle_hum { // Forests in desert temperatures with extremely high humidity // should probably be different from palm trees, but we use them // for now. ForestKind::Palm } else if humidity > CONFIG.forest_hum { ForestKind::Palm } else if humidity > CONFIG.desert_hum { // Low but not desert humidity, so we should really have some other // terrain... ForestKind::Savannah } else { ForestKind::Savannah } } else if temp > CONFIG.tropical_temp { if humidity > CONFIG.jungle_hum { if tree_density > 0.0 { // println!("Mangrove: {:?}", wposf); } ForestKind::Mangrove } else if humidity > CONFIG.forest_hum { // NOTE: Probably the wrong kind of tree for this climate. ForestKind::Oak } else if humidity > CONFIG.desert_hum { // Low but not desert... need something besides savannah. ForestKind::Savannah } else { ForestKind::Savannah } } else if humidity > CONFIG.jungle_hum { // Temperate climate with jungle humidity... // https://en.wikipedia.org/wiki/Humid_subtropical_climates are often // densely wooded and full of water. Semitropical rainforests, basically. // For now we just treet them like other rainforests. ForestKind::Oak } else if humidity > CONFIG.forest_hum { // Moderate climate, moderate humidity. ForestKind::Oak } else if humidity > CONFIG.desert_hum { // With moderate temperature and low humidity, we should probably see // something different from savannah, but oh well... ForestKind::Savannah } else { ForestKind::Savannah } } else { // For now we don't take humidity into account for cold climates (but we really // should!) except that we make sure we only have snow pines when there is snow. if temp <= CONFIG.snow_temp { ForestKind::SnowPine } else if humidity > CONFIG.desert_hum { ForestKind::Pine } else { // Should really have something like tundra. ForestKind::Pine } }, spawn_rate: 1.0, river, warp_factor: 1.0, sites: Vec::new(), place: None, path: PathData::default(), contains_waypoint: false, } } pub fn is_underwater(&self) -> bool { self.water_alt > self.alt || self.river.river_kind.is_some() } pub fn get_base_z(&self) -> f32 { self.alt - self.chaos * 50.0 - 16.0 } pub fn get_name(&self, _world: &WorldSim) -> Option { // TODO None /* if let Some(loc) = &self.location { Some(world.locations[loc.loc_idx].name().to_string()) } else { None } */ } pub fn get_biome(&self) -> BiomeKind { if self.alt < CONFIG.sea_level { BiomeKind::Ocean } else if self.chaos > 0.6 { BiomeKind::Mountain } else if self.temp > CONFIG.desert_temp { BiomeKind::Desert } else if self.temp < CONFIG.snow_temp { BiomeKind::Snowlands } else if self.tree_density > 0.65 { BiomeKind::Forest } else { BiomeKind::Grassland } } }