use crate::{ all::ForestKind, block::StructureMeta, sim::{local_cells, uniform_idx_as_vec2, vec2_as_uniform_idx, RiverKind, SimChunk, WorldSim}, util::Sampler, CONFIG, }; use common::{terrain::TerrainChunkSize, vol::RectVolSize}; use noise::NoiseFn; use roots::find_roots_cubic; use std::{ cmp::Reverse, f32, f64, ops::{Add, Div, Mul, Neg, Sub}, }; use vek::*; pub struct ColumnGen<'a> { pub sim: &'a WorldSim, } impl<'a> ColumnGen<'a> { pub fn new(sim: &'a WorldSim) -> Self { Self { sim } } #[allow(clippy::if_same_then_else)] // TODO: Pending review in #587 fn get_local_structure(&self, wpos: Vec2) -> Option { let (pos, seed) = self .sim .gen_ctx .region_gen .get(wpos) .iter() .copied() .min_by_key(|(pos, _)| pos.distance_squared(wpos)) .unwrap(); let chunk_pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32); let chunk = self.sim.get(chunk_pos)?; if seed % 5 == 2 && chunk.temp > CONFIG.desert_temp && chunk.alt > chunk.water_alt + 5.0 && chunk.chaos <= 0.35 { /*Some(StructureData { pos, seed, meta: Some(StructureMeta::Pyramid { height: 140 }), })*/ None } else { None } } fn gen_close_structures(&self, wpos: Vec2) -> [Option; 9] { let mut metas = [None; 9]; self.sim .gen_ctx .structure_gen .get(wpos) .iter() .copied() .enumerate() .for_each(|(i, (pos, seed))| { metas[i] = self.get_local_structure(pos).or(Some(StructureData { pos, seed, meta: None, })); }); metas } } fn river_spline_coeffs( // _sim: &WorldSim, chunk_pos: Vec2, spline_derivative: Vec2, downhill_pos: Vec2, ) -> Vec3> { let dxy = downhill_pos - chunk_pos; // Since all splines have been precomputed, we don't have to do that much work // to evaluate the spline. The spline is just ax^2 + bx + c = 0, where // // a = dxy - chunk.river.spline_derivative // b = chunk.river.spline_derivative // c = chunk_pos let spline_derivative = spline_derivative.map(|e| e as f64); Vec3::new(dxy - spline_derivative, spline_derivative, chunk_pos) } /// Find the nearest point from a quadratic spline to this point (in terms of t, /// the "distance along the curve" by which our spline is parameterized). Note /// that if t < 0.0 or t >= 1.0, we probably shouldn't be considered "on the /// curve"... hopefully this works out okay and gives us what we want (a /// river that extends outwards tangent to a quadratic curve, with width /// configured by distance along the line). #[allow(clippy::let_and_return)] // TODO: Pending review in #587 #[allow(clippy::many_single_char_names)] pub fn quadratic_nearest_point( spline: &Vec3>, point: Vec2, ) -> Option<(f64, Vec2, f64)> { let a = spline.z.x; let b = spline.y.x; let c = spline.x.x; let d = point.x; let e = spline.z.y; let f = spline.y.y; let g = spline.x.y; let h = point.y; // This is equivalent to solving the following cubic equation (derivation is a // bit annoying): // // A = 2(c^2 + g^2) // B = 3(b * c + g * f) // C = ((a - d) * 2 * c + b^2 + (e - h) * 2 * g + f^2) // D = ((a - d) * b + (e - h) * f) // // Ax³ + Bx² + Cx + D = 0 // // Once solved, this yield up to three possible values for t (reflecting minimal // and maximal values). We should choose the minimal such real value with t // between 0.0 and 1.0. If we fall outside those bounds, then we are // outside the spline and return None. let a_ = (c * c + g * g) * 2.0; let b_ = (b * c + g * f) * 3.0; let a_d = a - d; let e_h = e - h; let c_ = a_d * c * 2.0 + b * b + e_h * g * 2.0 + f * f; let d_ = a_d * b + e_h * f; let roots = find_roots_cubic(a_, b_, c_, d_); let roots = roots.as_ref(); let min_root = roots .iter() .copied() .filter_map(|root| { let river_point = spline.x * root * root + spline.y * root + spline.z; let river_zero = spline.z; let river_one = spline.x + spline.y + spline.z; if root > 0.0 && root < 1.0 { Some((root, river_point)) } else if river_point.distance_squared(river_zero) < 0.5 { Some((root, /*river_point*/ river_zero)) } else if river_point.distance_squared(river_one) < 0.5 { Some((root, /*river_point*/ river_one)) } else { None } }) .map(|(root, river_point)| { let river_distance = river_point.distance_squared(point); (root, river_point, river_distance) }) // In the (unlikely?) case that distances are equal, prefer the earliest point along the // river. .min_by(|&(ap, _, a), &(bp, _, b)| { (a, ap < 0.0 || ap > 1.0, ap) .partial_cmp(&(b, bp < 0.0 || bp > 1.0, bp)) .unwrap() }); min_root } impl<'a> Sampler<'a> for ColumnGen<'a> { type Index = Vec2; type Sample = Option>; #[allow(clippy::float_cmp)] // TODO: Pending review in #587 #[allow(clippy::if_same_then_else)] // TODO: Pending review in #587 #[allow(clippy::nonminimal_bool)] // TODO: Pending review in #587 #[allow(clippy::single_match)] // TODO: Pending review in #587 fn get(&self, wpos: Vec2) -> Option> { let wposf = wpos.map(|e| e as f64); let chunk_pos = wpos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32); let sim = &self.sim; let _turb = Vec2::new( sim.gen_ctx.turb_x_nz.get((wposf.div(48.0)).into_array()) as f32, sim.gen_ctx.turb_y_nz.get((wposf.div(48.0)).into_array()) as f32, ) * 12.0; let wposf_turb = wposf; // + turb.map(|e| e as f64); let chaos = sim.get_interpolated(wpos, |chunk| chunk.chaos)?; let temp = sim.get_interpolated(wpos, |chunk| chunk.temp)?; let humidity = sim.get_interpolated(wpos, |chunk| chunk.humidity)?; let rockiness = sim.get_interpolated(wpos, |chunk| chunk.rockiness)?; let tree_density = sim.get_interpolated(wpos, |chunk| chunk.tree_density)?; let spawn_rate = sim.get_interpolated(wpos, |chunk| chunk.spawn_rate)?; let alt = sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?; let chunk_warp_factor = sim.get_interpolated_monotone(wpos, |chunk| chunk.warp_factor)?; let sim_chunk = sim.get(chunk_pos)?; let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64); let my_chunk_idx = vec2_as_uniform_idx(chunk_pos); let neighbor_river_data = local_cells(my_chunk_idx).filter_map(|neighbor_idx: usize| { let neighbor_pos = uniform_idx_as_vec2(neighbor_idx); let neighbor_chunk = sim.get(neighbor_pos)?; Some((neighbor_pos, neighbor_chunk, &neighbor_chunk.river)) }); let lake_width = (TerrainChunkSize::RECT_SIZE.x as f64 * (2.0f64.sqrt())) + 12.0; let neighbor_river_data = neighbor_river_data.map(|(posj, chunkj, river)| { let kind = match river.river_kind { Some(kind) => kind, None => { return (posj, chunkj, river, None); }, }; let downhill_pos = if let Some(pos) = chunkj.downhill { pos } else { match kind { RiverKind::River { .. } => { log::error!("What? River: {:?}, Pos: {:?}", river, posj); panic!("How can a river have no downhill?"); }, RiverKind::Lake { .. } => { return (posj, chunkj, river, None); }, RiverKind::Ocean => posj, } }; let downhill_wpos = downhill_pos.map(|e| e as f64); let downhill_pos = downhill_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32); let neighbor_pos = posj.map(|e| e as f64) * neighbor_coef; let direction = neighbor_pos - downhill_wpos; let river_width_min = if let RiverKind::River { cross_section } = kind { cross_section.x as f64 } else { lake_width }; let downhill_chunk = sim.get(downhill_pos).expect("How can this not work?"); let coeffs = river_spline_coeffs(neighbor_pos, chunkj.river.spline_derivative, downhill_wpos); let (direction, coeffs, downhill_chunk, river_t, river_pos, river_dist) = match kind { RiverKind::River { .. } => { if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) { (direction, coeffs, downhill_chunk, t, pt, dist.sqrt()) } else { let ndist = wposf.distance_squared(neighbor_pos); let ddist = wposf.distance_squared(downhill_wpos); let (closest_pos, closest_dist, closest_t) = if ndist <= ddist { (neighbor_pos, ndist, 0.0) } else { (downhill_wpos, ddist, 1.0) }; ( direction, coeffs, downhill_chunk, closest_t, closest_pos, closest_dist.sqrt(), ) } }, RiverKind::Lake { neighbor_pass_pos } => { let pass_dist = neighbor_pass_pos .map2( neighbor_pos .map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)), |e, (f, g)| ((e - f) / g).abs(), ) .reduce_partial_max(); let spline_derivative = river.spline_derivative; let neighbor_pass_pos = if pass_dist <= 1 { neighbor_pass_pos } else { downhill_wpos.map(|e| e as i32) }; let pass_dist = neighbor_pass_pos .map2( neighbor_pos .map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)), |e, (f, g)| ((e - f) / g).abs(), ) .reduce_partial_max(); if pass_dist > 1 { return (posj, chunkj, river, None); } let neighbor_pass_wpos = neighbor_pass_pos.map(|e| e as f64); let neighbor_pass_pos = neighbor_pass_pos .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e / sz as i32); let coeffs = river_spline_coeffs(neighbor_pos, spline_derivative, neighbor_pass_wpos); let direction = neighbor_pos - neighbor_pass_wpos; if let Some((t, pt, dist)) = quadratic_nearest_point(&coeffs, wposf) { ( direction, coeffs, sim.get(neighbor_pass_pos).expect("Must already work"), t, pt, dist.sqrt(), ) } else { let ndist = wposf.distance_squared(neighbor_pos); /* let ddist = wposf.distance_squared(neighbor_pass_wpos); */ let (closest_pos, closest_dist, closest_t) = /*if ndist <= ddist */ { (neighbor_pos, ndist, 0.0) } /* else { (neighbor_pass_wpos, ddist, 1.0) } */; ( direction, coeffs, sim.get(neighbor_pass_pos).expect("Must already work"), closest_t, closest_pos, closest_dist.sqrt(), ) } }, RiverKind::Ocean => { let ndist = wposf.distance_squared(neighbor_pos); let (closest_pos, closest_dist, closest_t) = (neighbor_pos, ndist, 0.0); ( direction, coeffs, sim.get(closest_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as i32 / sz as i32 })) .expect("Must already work"), closest_t, closest_pos, closest_dist.sqrt(), ) }, }; let river_width_max = if let Some(RiverKind::River { cross_section }) = downhill_chunk.river.river_kind { cross_section.x as f64 } else { lake_width }; let river_width_noise = (sim.gen_ctx.small_nz.get((river_pos.div(16.0)).into_array())) .max(-1.0) .min(1.0) .mul(0.5) .sub(0.5) as f64; let river_width = Lerp::lerp( river_width_min, river_width_max, river_t.max(0.0).min(1.0).powf(0.5), ); let river_width = river_width * (1.0 + river_width_noise * 0.3); // To find the distance, we just evaluate the quadratic equation at river_t and // see if it's within width (but we should be able to use it for a // lot more, and this probably isn't the very best approach anyway // since it will bleed out). let river_pos = coeffs.x * river_t * // river_t + coeffs.y * river_t + coeffs.z; let res = Vec2::new(0.0, (river_dist - (river_width * 0.5).max(1.0)).max(0.0)); ( posj, chunkj, river, Some(( direction, res, river_width, (river_t, (river_pos, coeffs), downhill_chunk), )), ) }); // Find the average distance to each neighboring body of water. let mut river_count = 0.0f64; let mut overlap_count = 0.0f64; let mut river_distance_product = 1.0f64; let mut river_overlap_distance_product = 0.0f64; let mut max_river = None; let mut max_key = None; // IDEA: // For every "nearby" chunk, check whether it is a river. If so, find the // closest point on the river segment to wposf (if two point are // equidistant, choose the earlier one), calling this point river_pos // and the length (from 0 to 1) along the river segment for the nearby // chunk river_t. Let river_dist be the distance from river_pos to wposf. // // Let river_alt be the interpolated river height at this point // (from the alt/water altitude at the river, to the alt/water_altitude of the // downhill river, increasing with river_t). // // Now, if river_dist is <= river_width * 0.5, then we don't care what altitude // we use, and mark that we are on a river (we decide what river to use // using a heuristic, and set the solely according to the computed // river_alt for that point). // // Otherwise, we let dist = river_dist - river_width * 0.5. // // If dist >= TerrainChunkSize::RECT_SIZE.x, we don't include this river in the // calculation of the correct altitude for this point. // // Otherwise (i.e. dist < TerrainChunkSize::RECT_SIZE.x), we want to bias the // altitude of this point towards the altitude of the river. // Specifically, as the dist goes from TerrainChunkSize::RECT_SIZE.x to // 0, the weighted altitude of this point should go from // alt to river_alt. neighbor_river_data.for_each(|(river_chunk_idx, river_chunk, river, dist)| { match river.river_kind { Some(kind) => { if kind.is_river() && !dist.is_some() { // Ostensibly near a river segment, but not "usefully" so (there is no // closest point between t = 0.0 and t = 1.0). return; } else { let river_dist = dist.map(|(_, dist, _, (river_t, _, downhill_river))| { let downhill_height = if kind.is_river() { Lerp::lerp( river_chunk.alt.max(river_chunk.water_alt), downhill_river.alt.max(downhill_river.water_alt), river_t as f32, ) as f64 } else { let neighbor_pos = river_chunk_idx.map(|e| e as f64) * neighbor_coef; if dist.y == 0.0 { -(wposf - neighbor_pos).magnitude() } else { -(wposf - neighbor_pos).magnitude() } }; (Reverse((dist.x, dist.y)), downhill_height) }); let river_dist = river_dist.or_else(|| { if !kind.is_river() { let neighbor_pos = river_chunk_idx.map(|e| e as f64) * neighbor_coef; let dist = (wposf - neighbor_pos).magnitude(); let dist_upon = (dist - TerrainChunkSize::RECT_SIZE.x as f64 * 0.5).max(0.0); let dist_ = if dist == 0.0 { f64::INFINITY } else { -dist }; Some((Reverse((0.0, dist_upon)), dist_)) } else { None } }); let river_key = (river_dist, Reverse(kind)); if max_key < Some(river_key) { max_river = Some((river_chunk_idx, river_chunk, river, dist)); max_key = Some(river_key); } } // NOTE: we scale by the distance to the river divided by the difference // between the edge of the river that we intersect, and the remaining distance // until the nearest point in "this" chunk (i.e. the one whose top-left corner // is chunk_pos) that is at least 2 chunks away from the river source. if let Some((_, dist, _, (river_t, _, downhill_river_chunk))) = dist { let max_distance = if !river.is_river() { /*(*/ TerrainChunkSize::RECT_SIZE.x as f64 /* * (1.0 - (2.0f64.sqrt() / 2.0))) + 4.0*/ - lake_width * 0.5 } else { TerrainChunkSize::RECT_SIZE.x as f64 }; let scale_factor = max_distance; let river_dist = dist.y; if !(dist.x == 0.0 && river_dist < scale_factor) { return; } // We basically want to project outwards from river_pos, along the current // tangent line, to chunks <= river_width * 1.0 away from this // point. We *don't* want to deal with closer chunks because they // NOTE: river_width <= 2 * max terrain chunk size width, so this should not // lead to division by zero. // NOTE: If distance = 0.0 this goes to zero, which is desired since it // means points that actually intersect with rivers will not be interpolated // with the "normal" height of this point. // NOTE: We keep the maximum at 1.0 so we don't undo work from another river // just by being far away. let river_scale = river_dist / scale_factor; let river_alt = Lerp::lerp(river_chunk.alt, downhill_river_chunk.alt, river_t as f32); let river_alt = Lerp::lerp(river_alt, alt, river_scale as f32); let river_alt_diff = river_alt - alt; let river_alt_inv = river_alt_diff as f64; river_overlap_distance_product += (1.0 - river_scale) * river_alt_inv; overlap_count += 1.0 - river_scale; river_count += 1.0; river_distance_product *= river_scale; } } None => {} } }); let river_scale_factor = if river_count == 0.0 { 1.0 } else { let river_scale_factor = river_distance_product; if river_scale_factor == 0.0 { 0.0 } else { river_scale_factor.powf(if river_count == 0.0 { 1.0 } else { 1.0 / river_count }) } }; let alt_for_river = alt + if overlap_count == 0.0 { 0.0 } else { river_overlap_distance_product / overlap_count } as f32; let cliff_hill = (sim .gen_ctx .small_nz .get((wposf_turb.div(128.0)).into_array()) as f32) .mul(4.0); let riverless_alt_delta = (sim.gen_ctx.small_nz.get( (wposf_turb.div(200.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))).into_array(), ) as f32) .min(1.0) .max(-1.0) .abs() .mul(3.0) + (sim.gen_ctx.small_nz.get( (wposf_turb.div(400.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))) .into_array(), ) as f32) .min(1.0) .max(-1.0) .abs() .mul(3.0); let downhill = sim_chunk.downhill; let downhill_pos = downhill.and_then(|downhill_pos| sim.get(downhill_pos)); debug_assert!(sim_chunk.water_alt >= CONFIG.sea_level); let downhill_water_alt = downhill_pos .map(|downhill_chunk| { downhill_chunk .water_alt .min(sim_chunk.water_alt) .max(sim_chunk.alt.min(sim_chunk.water_alt)) }) .unwrap_or(CONFIG.sea_level); let is_cliffs = sim_chunk.is_cliffs; let near_cliffs = sim_chunk.near_cliffs; let river_gouge = 0.5; let (_in_water, water_dist, alt_, water_level, riverless_alt, warp_factor) = if let Some( (max_border_river_pos, river_chunk, max_border_river, max_border_river_dist), ) = max_river { // This is flowing into a lake, or a lake, or is at least a non-ocean tile. // // If we are <= water_alt, we are in the lake; otherwise, we are flowing into // it. let (in_water, water_dist, new_alt, new_water_alt, riverless_alt, warp_factor) = max_border_river .river_kind .and_then(|river_kind| { if let RiverKind::River { cross_section } = river_kind { if max_border_river_dist.map(|(_, dist, _, _)| dist) != Some(Vec2::zero()) { return None; } let ( _, _, river_width, (river_t, (river_pos, _), downhill_river_chunk), ) = max_border_river_dist.unwrap(); let river_alt = Lerp::lerp( river_chunk.alt.max(river_chunk.water_alt), downhill_river_chunk.alt.max(downhill_river_chunk.water_alt), river_t as f32, ); let new_alt = river_alt - river_gouge; let river_dist = wposf.distance(river_pos); let river_height_factor = river_dist / (river_width * 0.5); let valley_alt = Lerp::lerp( new_alt - cross_section.y.max(1.0), new_alt - 1.0, (river_height_factor * river_height_factor) as f32, ); Some(( true, Some((river_dist - river_width * 0.5) as f32), valley_alt, new_alt, river_alt, 0.0, )) } else { None } }) .unwrap_or_else(|| { max_border_river .river_kind .and_then(|river_kind| { match river_kind { RiverKind::Ocean => { let ( _, dist, river_width, (river_t, (river_pos, _), downhill_river_chunk), ) = if let Some(dist) = max_border_river_dist { dist } else { log::error!( "Ocean: {:?} Here: {:?}, Ocean: {:?}", max_border_river, chunk_pos, max_border_river_pos ); panic!( "Oceans should definitely have a downhill! \ ...Right?" ); }; let lake_water_alt = Lerp::lerp( river_chunk.alt.max(river_chunk.water_alt), downhill_river_chunk .alt .max(downhill_river_chunk.water_alt), river_t as f32, ); if dist == Vec2::zero() { let river_dist = wposf.distance(river_pos); let _river_height_factor = river_dist / (river_width * 0.5); return Some(( true, Some((river_dist - river_width * 0.5) as f32), alt_for_river .min(lake_water_alt - 1.0 - river_gouge), lake_water_alt - river_gouge, alt_for_river.max(lake_water_alt), 0.0, )); } Some(( river_scale_factor <= 1.0, Some( (wposf.distance(river_pos) - river_width * 0.5) as f32, ), alt_for_river, downhill_water_alt, alt_for_river, river_scale_factor as f32, )) }, RiverKind::Lake { .. } => { let lake_dist = (max_border_river_pos.map(|e| e as f64) * neighbor_coef) .distance(wposf); let downhill_river_chunk = max_border_river_pos; let lake_id_dist = downhill_river_chunk - chunk_pos; let in_bounds = lake_id_dist.x >= -1 && lake_id_dist.y >= -1 && lake_id_dist.x <= 1 && lake_id_dist.y <= 1; let in_bounds = in_bounds && (lake_id_dist.x >= 0 && lake_id_dist.y >= 0); let (_, dist, _, (river_t, _, downhill_river_chunk)) = if let Some(dist) = max_border_river_dist { dist } else if lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0 || in_bounds { let gouge_factor = 0.0; return Some(( in_bounds || downhill_water_alt .max(river_chunk.water_alt) > alt_for_river, Some(lake_dist as f32), alt_for_river, (downhill_water_alt.max(river_chunk.water_alt) - river_gouge), alt_for_river, river_scale_factor as f32 * (1.0 - gouge_factor), )); } else { return Some(( false, Some(lake_dist as f32), alt_for_river, downhill_water_alt, alt_for_river, river_scale_factor as f32, )); }; let lake_dist = dist.y; let lake_water_alt = Lerp::lerp( river_chunk.alt.max(river_chunk.water_alt), downhill_river_chunk .alt .max(downhill_river_chunk.water_alt), river_t as f32, ); if dist == Vec2::zero() { return Some(( true, Some(lake_dist as f32), alt_for_river .min(lake_water_alt - 1.0 - river_gouge), lake_water_alt - river_gouge, alt_for_river.max(lake_water_alt), 0.0, )); } if lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 1.0 || in_bounds { let gouge_factor = if in_bounds && lake_dist <= 1.0 { 1.0 } else { 0.0 }; let in_bounds_ = lake_dist <= TerrainChunkSize::RECT_SIZE.x as f64 * 0.5; if gouge_factor == 1.0 { return Some(( true, Some(lake_dist as f32), alt.min(lake_water_alt - 1.0 - river_gouge), downhill_water_alt.max(lake_water_alt) - river_gouge, alt.max(lake_water_alt), 0.0, )); } else { return Some(( true, None, alt_for_river, if in_bounds_ { downhill_water_alt.max(lake_water_alt) } else { downhill_water_alt } - river_gouge, alt_for_river, river_scale_factor as f32 * (1.0 - gouge_factor), )); } } Some(( river_scale_factor <= 1.0, Some(lake_dist as f32), alt_for_river, downhill_water_alt, alt_for_river, river_scale_factor as f32, )) }, RiverKind::River { .. } => { let (_, _, river_width, (_, (river_pos, _), _)) = max_border_river_dist.unwrap(); let river_dist = wposf.distance(river_pos); // FIXME: Make water altitude accurate. Some(( river_scale_factor <= 1.0, Some((river_dist - river_width * 0.5) as f32), alt_for_river, downhill_water_alt, alt_for_river, river_scale_factor as f32, )) }, } }) .unwrap_or(( false, None, alt_for_river, downhill_water_alt, alt_for_river, river_scale_factor as f32, )) }); ( in_water, water_dist, new_alt, new_water_alt, riverless_alt, warp_factor, ) } else { ( false, None, alt_for_river, downhill_water_alt, alt_for_river, 1.0, ) }; let warp_factor = warp_factor * chunk_warp_factor; // NOTE: To disable warp, uncomment this line. // let warp_factor = 0.0; let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor); let alt = alt_ + riverless_alt_delta; let riverless_alt = riverless_alt + riverless_alt_delta; let basement = alt + sim.get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?; let rock = (sim.gen_ctx.small_nz.get( Vec3::new(wposf.x, wposf.y, alt as f64) .div(100.0) .into_array(), ) as f32) .mul(rockiness) .sub(0.4) .max(0.0) .mul(8.0); let wposf3d = Vec3::new(wposf.x, wposf.y, alt as f64); let marble_small = (sim.gen_ctx.hill_nz.get((wposf3d.div(3.0)).into_array()) as f32) .powf(3.0) .add(1.0) .mul(0.5); let marble = (sim.gen_ctx.hill_nz.get((wposf3d.div(48.0)).into_array()) as f32) .mul(0.75) .add(1.0) .mul(0.5) .add(marble_small.sub(0.5).mul(0.25)); // Colours let cold_grass = Rgb::new(0.0, 0.5, 0.25); let warm_grass = Rgb::new(0.4, 0.8, 0.0); let dark_grass = Rgb::new(0.15, 0.4, 0.1); let wet_grass = Rgb::new(0.1, 0.8, 0.2); let cold_stone = Rgb::new(0.57, 0.67, 0.8); let hot_stone = Rgb::new(0.07, 0.07, 0.06); let warm_stone = Rgb::new(0.77, 0.77, 0.64); let beach_sand = Rgb::new(0.9, 0.82, 0.6); let desert_sand = Rgb::new(0.95, 0.75, 0.5); let snow = Rgb::new(0.8, 0.85, 1.0); let stone_col = Rgb::new(195, 187, 201); let dirt = Lerp::lerp( Rgb::new(0.075, 0.07, 0.3), Rgb::new(0.75, 0.55, 0.1), marble, ); let tundra = Lerp::lerp(snow, Rgb::new(0.01, 0.3, 0.0), 0.4 + marble * 0.6); let dead_tundra = Lerp::lerp(warm_stone, Rgb::new(0.3, 0.12, 0.2), marble); let cliff = Rgb::lerp(cold_stone, hot_stone, marble); let grass = Rgb::lerp( cold_grass, warm_grass, marble.sub(0.5).add(1.0.sub(humidity).mul(0.5)).powf(1.5), ); let snow_moss = Rgb::lerp(snow, cold_grass, 0.4 + marble.powf(1.5) * 0.6); let moss = Rgb::lerp(dark_grass, cold_grass, marble.powf(1.5)); let rainforest = Rgb::lerp(wet_grass, warm_grass, marble.powf(1.5)); let sand = Rgb::lerp(beach_sand, desert_sand, marble); let tropical = Rgb::lerp( Rgb::lerp( grass, Rgb::new(0.15, 0.2, 0.15), marble_small .sub(0.5) .mul(0.2) .add(0.75.mul(1.0.sub(humidity))) .powf(0.667), ), Rgb::new(0.87, 0.62, 0.56), marble.powf(1.5).sub(0.5).mul(4.0), ); // For below desert humidity, we are always sand or rock, depending on altitude // and temperature. let ground = Lerp::lerp( Lerp::lerp( dead_tundra, sand, temp.sub(CONFIG.snow_temp) .div(CONFIG.desert_temp.sub(CONFIG.snow_temp)) .mul(0.5), ), dirt, humidity .sub(CONFIG.desert_hum) .div(CONFIG.forest_hum.sub(CONFIG.desert_hum)) .mul(1.0), ); let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25)); // From desert to forest humidity, we go from tundra to dirt to grass to moss to // sand, depending on temperature. let ground = Rgb::lerp( ground, Rgb::lerp( Rgb::lerp( Rgb::lerp( Rgb::lerp( tundra, // snow_temp to temperate_temp dirt, temp.sub(CONFIG.snow_temp) .div(CONFIG.temperate_temp.sub(CONFIG.snow_temp)) /*.sub((marble - 0.5) * 0.05) .mul(256.0)*/ .mul(1.0), ), // temperate_temp to tropical_temp grass, temp.sub(CONFIG.temperate_temp) .div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp)) .mul(4.0), ), // tropical_temp to desert_temp moss, temp.sub(CONFIG.tropical_temp) .div(CONFIG.desert_temp.sub(CONFIG.tropical_temp)) .mul(1.0), ), // above desert_temp sand, temp.sub(CONFIG.desert_temp) .div(1.0 - CONFIG.desert_temp) .mul(4.0), ), humidity .sub(CONFIG.desert_hum) .div(CONFIG.forest_hum.sub(CONFIG.desert_hum)) .mul(1.0), ); // From forest to jungle humidity, we go from snow to dark grass to grass to // tropics to sand depending on temperature. let ground = Rgb::lerp( ground, Rgb::lerp( Rgb::lerp( Rgb::lerp( snow_moss, // temperate_temp to tropical_temp grass, temp.sub(CONFIG.temperate_temp) .div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp)) .mul(4.0), ), // tropical_temp to desert_temp tropical, temp.sub(CONFIG.tropical_temp) .div(CONFIG.desert_temp.sub(CONFIG.tropical_temp)) .mul(1.0), ), // above desert_temp sand, temp.sub(CONFIG.desert_temp) .div(1.0 - CONFIG.desert_temp) .mul(4.0), ), humidity .sub(CONFIG.forest_hum) .div(CONFIG.jungle_hum.sub(CONFIG.forest_hum)) .mul(1.0), ); // From jungle humidity upwards, we go from snow to grass to rainforest to // tropics to sand. let ground = Rgb::lerp( ground, Rgb::lerp( Rgb::lerp( Rgb::lerp( snow_moss, // temperate_temp to tropical_temp rainforest, temp.sub(CONFIG.temperate_temp) .div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp)) .mul(4.0), ), // tropical_temp to desert_temp tropical, temp.sub(CONFIG.tropical_temp) .div(CONFIG.desert_temp.sub(CONFIG.tropical_temp)) .mul(4.0), ), // above desert_temp sand, temp.sub(CONFIG.desert_temp) .div(1.0 - CONFIG.desert_temp) .mul(4.0), ), humidity.sub(CONFIG.jungle_hum).mul(1.0), ); // Snow covering let snow_cover = temp .sub(CONFIG.snow_temp) .max(-humidity.sub(CONFIG.desert_hum)) .mul(16.0) .add((marble_small - 0.5) * 0.5); let (alt, ground, sub_surface_color) = if snow_cover <= 0.5 && alt > water_level { // Allow snow cover. ( alt + 1.0 - snow_cover.max(0.0), Rgb::lerp(snow, ground, snow_cover), Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)), ) } else { (alt, ground, sub_surface_color) }; // Caves let cave_at = |wposf: Vec2| { (sim.gen_ctx.cave_0_nz.get( Vec3::new(wposf.x, wposf.y, alt as f64 * 8.0) .div(800.0) .into_array(), ) as f32) .powf(2.0) .neg() .add(1.0) .mul((1.32 - chaos).min(1.0)) }; let cave_xy = cave_at(wposf); let cave_alt = alt - 24.0 + (sim .gen_ctx .cave_1_nz .get(Vec2::new(wposf.x, wposf.y).div(48.0).into_array()) as f32) * 8.0 + (sim .gen_ctx .cave_1_nz .get(Vec2::new(wposf.x, wposf.y).div(500.0).into_array()) as f32) .add(1.0) .mul(0.5) .powf(15.0) .mul(150.0); let near_ocean = max_river.and_then(|(_, _, river_data, _)| { if (river_data.is_lake() || river_data.river_kind == Some(RiverKind::Ocean)) && ((alt <= water_level.max(CONFIG.sea_level + 5.0) && !is_cliffs) || !near_cliffs) { Some(water_level) } else { None } }); let ocean_level = if let Some(_sea_level) = near_ocean { alt - CONFIG.sea_level } else { 5.0 }; let path = sim.get_nearest_path(wpos); Some(ColumnSample { alt, riverless_alt, basement, chaos, water_level, warp_factor, surface_color: Rgb::lerp( Rgb::lerp(cliff, sand, alt.sub(basement).mul(0.25)), // Land ground, // Beach ((ocean_level - 1.0) / 2.0).max(0.0), ), sub_surface_color, // No growing directly on bedrock. // And, no growing on sites that don't want them TODO: More precise than this when we // apply trees as a post-processing layer tree_density: if sim_chunk .sites .iter() .all(|site| site.spawn_rules(wpos).trees) { Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5)) } else { 0.0 }, forest_kind: sim_chunk.forest_kind, close_structures: self.gen_close_structures(wpos), cave_xy, cave_alt, marble, marble_small, rock, is_cliffs, near_cliffs, cliff_hill, close_cliffs: sim.gen_ctx.cliff_gen.get(wpos), temp, humidity, spawn_rate, stone_col, water_dist, path, chunk: sim_chunk, }) } } #[derive(Clone)] pub struct ColumnSample<'a> { pub alt: f32, pub riverless_alt: f32, pub basement: f32, pub chaos: f32, pub water_level: f32, pub warp_factor: f32, pub surface_color: Rgb, pub sub_surface_color: Rgb, pub tree_density: f32, pub forest_kind: ForestKind, pub close_structures: [Option; 9], pub cave_xy: f32, pub cave_alt: f32, pub marble: f32, pub marble_small: f32, pub rock: f32, pub is_cliffs: bool, pub near_cliffs: bool, pub cliff_hill: f32, pub close_cliffs: [(Vec2, u32); 9], pub temp: f32, pub humidity: f32, pub spawn_rate: f32, pub stone_col: Rgb, pub water_dist: Option, pub path: Option<(f32, Vec2)>, pub chunk: &'a SimChunk, } #[derive(Copy, Clone)] pub struct StructureData { pub pos: Vec2, pub seed: u32, pub meta: Option, }