#version 420 core #include #define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION) #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_SHADOW_MAPS #include #include layout(location = 0) in vec3 f_pos; layout(location = 1) flat in uint f_pos_norm; layout(location = 2) in vec2 f_vel; // in vec3 f_col; // in float f_light; // in vec3 light_pos[2]; // struct ShadowLocals { // mat4 shadowMatrices; // mat4 texture_mat; // }; // // layout (std140) // uniform u_light_shadows { // ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192]; // }; layout(std140, set = 2, binding = 0) uniform u_locals { mat4 model_mat; ivec4 atlas_offs; float load_time; }; layout(location = 0) out vec4 tgt_color; layout(location = 1) out uvec4 tgt_mat; #include #include #include vec4 water_col(vec4 posx, vec4 posy) { posx = (posx + focus_off.x) * 0.1; posy = (posy + focus_off.y) * 0.1; return 0.5 + (vec4( textureLod(sampler2D(t_noise, s_noise), vec2(posx.x, posy.x), 0).x, textureLod(sampler2D(t_noise, s_noise), vec2(posx.y, posy.y), 0).x, textureLod(sampler2D(t_noise, s_noise), vec2(posx.z, posy.z), 0).x, textureLod(sampler2D(t_noise, s_noise), vec2(posx.w, posy.w), 0).x ) - 0.5) * 1.0; } float water_col_vel(vec2 pos){ vec4 cols = water_col( pos.x - tick.x * floor(f_vel.x) - vec2(0.0, tick.x).xyxy, pos.y - tick.x * floor(f_vel.y) - vec2(0.0, tick.x).xxyy ); return mix( mix(cols.x, cols.y, fract(f_vel.x + 1.0)), mix(cols.z, cols.w, fract(f_vel.x + 1.0)), fract(f_vel.y + 1.0) ); } void main() { #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(simple_lighting(f_pos.xyz, MU_SCATTER, 1.0), 0.5); return; #endif // tgt_color = vec4(1.0 - MU_WATER, 1.0); // return; // First 3 normals are negative, next 3 are positive vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); // TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction. uint norm_axis = (f_pos_norm >> 30) & 0x3u; // Increase array access by 3 to access positive values uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u; // Use an array to avoid conditional branching vec3 f_norm = normals[norm_axis + norm_dir]; // vec4 light_pos[2]; // #if (SHADOW_MODE == SHADOW_MODE_MAP) // // for (uint i = 0u; i < light_shadow_count.z; ++i) { // // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/; // // } // vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/; // #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // vec4 sun_pos = vec4(0.0); // #endif vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; // vec3 surf_color = /*srgb_to_linear*/(vec3(0.4, 0.7, 2.0)); float water_shade = water_col_vel(f_pos.xy); vec3 water_color = (1.0 - mix(MU_WATER, pow(vec3(0.8, 0.9, 0.08), vec3(0.25)), water_shade)) * MU_SCATTER; /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM) float f_alt = alt_at(f_pos.xy); #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW) float f_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); // float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/); float fluid_alt = f_pos.z;//max(ceil(f_pos.z), floor(f_alt));// f_alt;//max(f_alt - f_pos.z, 0.0); const float alpha = 0.255/* / 4.0 / sqrt(2.0)*/; const float n2 = 1.3325; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float R_s = (f_pos.z < fluid_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); // Water is transparent so both normals are valid. vec3 cam_norm = faceforward(f_norm, f_norm, cam_to_frag); vec3 mu = MU_WATER; // NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water. vec3 cam_attenuation = vec3(1.0);//compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, cam_pos.xyz); // NOTE: Assumes normal is vertical. vec3 sun_view_dir = cam_pos.z <= fluid_alt ? /*refract(view_dir, -f_norm, 1.0 / n2)*//*reflect(view_dir, -f_norm)*/-view_dir : view_dir;//vec3(view_dir.xy, -view_dir.z) : view_dir; vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 reflect_ray_dir = reflect(cam_to_frag, f_norm); vec3 reflect_color = vec3(0.0); #if (REFLECTION_MODE >= REFLECTION_MODE_MEDIUM) reflect_color = get_sky_color(reflect_ray_dir, f_pos, vec3(-100000), 0.125, true, 1.0, true, sun_shade_frac); #endif vec3 emitted_light, reflected_light; // Prevent the sky affecting light when underground float not_underground = clamp((f_pos.z - f_alt) / 128.0 + 1.0, 0.0, 1.0); reflect_color *= not_underground; // float point_shadow = shadow_at(f_pos, f_norm); // vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec3 emitted_light, reflected_light; // vec3 light, diffuse_light, ambient_light; // Squared to account for prior saturation. // float f_light = 1.0;// pow(f_light, 1.5); // float vert_light = f_light; // vec3 light_frac = /*vec3(1.0);*/light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha); // vec3 surf_color = /*srgb_to_linear*/(vec3(0.4, 0.7, 2.0)); float max_light = 0.0; max_light += get_sun_diffuse2(sun_info, moon_info, f_norm, sun_view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, /*vec3(0.0)*/k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); emitted_light *= not_underground; reflected_light *= not_underground; // Global illumination when underground (silly) emitted_light += (1.0 - not_underground) * 0.05; float point_shadow = shadow_at(f_pos, f_norm); reflected_light *= point_shadow; emitted_light *= point_shadow; // reflected_light *= f_light * point_shadow * shade_frac; // emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW); // max_light *= f_light * point_shadow * shade_frac; // reflected_light *= f_light * point_shadow; // emitted_light *= f_light * point_shadow; // max_light *= f_light * point_shadow; // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 0.0); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light, point_shadow; // vec3 point_light = light_at(f_pos, f_norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // vec3 surf_color = srgb_to_linear(vec3(0.4, 0.7, 2.0)) * light * diffuse_light * ambient_light; // lights_at(f_pos, f_norm, cam_to_frag, k_a * f_light * point_shadow, k_d * f_light * point_shadow, k_s * f_light * point_shadow, alpha, emitted_light, reflected_light); /*vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ max_light += lights_at(f_pos, /*f_norm*/cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); // vec3 diffuse_light_point = vec3(0.0); // max_light += lights_at(f_pos, f_norm, view_dir, k_a, vec3(1.0), k_s, alpha, emitted_light, diffuse_light_point); // float reflected_light_point = length(reflected_light);///*length*/(diffuse_light_point.r) + f_light * point_shadow; // float reflected_light_point = dot(reflected_light, reflected_light) * 0.5;///*length*/(diffuse_light_point.r) + f_light * point_shadow; // vec3 dump_light = vec3(0.0); // vec3 specular_light_point = vec3(0.0); // lights_at(f_pos, f_norm, view_dir, vec3(0.0), vec3(0.0), /*vec3(1.0)*/k_s, alpha, dump_light, specular_light_point); // diffuse_light_point -= specular_light_point; // float reflected_light_point = /*length*/(diffuse_light_point.r) + f_light * point_shadow; // reflected_light += k_d * (diffuse_light_point + f_light * point_shadow * shade_frac) + specular_light_point; float passthrough = max(dot(cam_norm, -cam_to_frag), 0); float min_refl = 0.0; float opacity = (1.0 - passthrough) * 1.0 / (1.0 + min_refl); if (medium.x == MEDIUM_WATER) { // Hack to make the transparency of the surface fade when underwater to avoid artifacts opacity = min(sqrt(max(opacity, clamp((f_pos.z - cam_pos.z) * 0.05, 0.0, 1.0))), 0.99); } vec3 surf_color = illuminate(max_light, view_dir, water_color * /* fog_color * */emitted_light, /*surf_color * */reflect_color * water_shade + water_color * reflected_light); // vec4 color = vec4(surf_color, passthrough * 1.0 / (1.0 + min_refl));// * (1.0 - /*log(1.0 + cam_attenuation)*//*cam_attenuation*/1.0 / (2.0 - log_cam))); vec4 color = vec4(surf_color, opacity); tgt_color = color; tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), MAT_FLUID); }