#version 330 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_VOXEL #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include #include #include in vec2 v_pos; layout (std140) uniform u_locals { vec4 nul; }; out vec3 f_pos; out vec3 f_norm; out float pull_down; // out vec2 v_pos_orig; // out vec4 f_square; // out vec4 f_shadow; // out float f_light; void main() { // Find distances between vertices. Pull down a tiny bit more to reduce z fighting near the ocean. f_pos = lod_pos(v_pos, focus_pos.xy) - vec3(0, 0, 0.1); vec2 dims = vec2(1.0 / view_distance.y); vec4 f_square = focus_pos.xyxy + vec4(splay(v_pos - dims), splay(v_pos + dims)); f_norm = lod_norm(f_pos.xy, f_square); // v_pos_orig = v_pos; // f_pos = lod_pos(focus_pos.xy + splay(v_pos) * /*1000000.0*/(1 << 20), square); // f_norm = lod_norm(f_pos.xy); // f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); pull_down = 1.0 / pow(distance(focus_pos.xy, f_pos.xy) / (view_distance.x * 0.95), 20.0); f_pos.z -= pull_down; // f_pos.z -= 100.0 * pow(1.0 + 0.01 / view_distance.x, -pow(distance(focus_pos.xy, f_pos.xy), 2.0)); // f_pos.z = mix(-f_pos.z, f_pos.z, view_distance.x <= distance(focus_pos.xy, f_pos.xy) + 32.0); // bool faces_fluid = false;// bool((f_pos_norm >> 28) & 0x1u); // // TODO: Measure real water surface altitude here. // float surfaceAlt = mix(view_distance.z, /*floor*/(min(f_pos.z, floor(alt_at_real(cam_pos.xy)))), medium.x); // // float surfaceAlt = mix(view_distance.z, floor(max(cam_pos.z, alt_at_real(cam_pos.xy))), medium.x); // // float surfaceAlt = min(floor(f_pos.z), floor(alt_at_real(cam_pos.xy))); // faces_fluid ? max(ceil(f_pos.z), floor(f_alt)) : floor(f_alt); // f_pos.z -= max(sign(view_distance.x - distance(focus_pos.xy, f_pos.xy)), 0.0) * (32.0 * view_distance.z / 255 + 32.0 * max(0.0, f_pos.z - cam_pos.z)); // f_pos.z -= 0.1 + max(view_distance.x - distance(focus_pos.xy, f_pos.xy), 0.0) * (1.0 + max(1.0, ceil(f_pos.z - focus_pos.z))); // vec3 wRayinitial = f_pos; // cam_pos.z < f_pos.z ? f_pos : cam_pos.xyz; // vec3 wRayfinal = cam_pos.xyz; // cam_pos.z < f_pos.z ? cam_pos.xyz : f_pos; // wRayfinal = dot(wRayfinal - wRayinitial, focus_pos.xyz - cam_pos.xyz) < 0.0 ? wRayfinal : wRayinitial; // vec3 wRayNormal = /*surfaceAlt < wRayinitial.z ? vec3(0.0, 0.0, -1.0) : */vec3(0.0, 0.0, 1.0); // float n_camera = mix(1.0, 1.3325, medium.x); // float n_vertex = faces_fluid ? 1.3325 : 1.0; // float n1 = n_vertex; // cam_pos.z < f_pos.z ? n_vertex : n_camera; // float n2 = n_camera; // cam_pos.z < f_pos.z ? n_camera : n_vertex; // float wRayLength0 = length(wRayfinal - wRayinitial); // vec3 wRayDir = (wRayfinal - wRayinitial) / wRayLength0; // vec3 wPoint = wRayfinal; // bool wIntersectsSurface = IntersectRayPlane(wRayinitial, wRayDir, vec3(0.0, 0.0, surfaceAlt), -wRayNormal, wPoint); // float wRayLength = length(wPoint - wRayinitial); // wPoint = wRayLength < wRayLength0 ? wPoint : wRayfinal; // wRayLength = min(wRayLength, wRayLength0); // min(max_length, dot(wRayfinal - wpos, defaultpos - wpos)); // // vec3 wRayDir2 = (wRayfinal - wRayinitial) / wRayLength; // vec3 wRayDir3 = (dot(wRayDir, wRayNormal) < 0.0 && surfaceAlt < wRayinitial.z && wIntersectsSurface/* && medium.x == 1u*/) ? refract(wRayDir, wRayNormal, n2 / n1) : wRayDir; // // wPoint -= wRayDir3 * wRayLength * n2 / n1; // vec3 newRay = (dot(wRayDir3, focus_pos.xyz - cam_pos.xyz) < 0.0 && /*dot(wRayDir, wRayNormal) > 0.0 && *//*surfaceAlt < wRayinitial.z && */wIntersectsSurface && medium.x == 1u) ? wPoint - wRayDir3 * wRayLength * n2 / n1/*wPoint - wRayDir3 * wRayLength * n2 / n1*/ : f_pos;// - (wRayfinal - wPoint) * n2 / n1; // wPoint + n2 * (wRayfinal - wPoint) - n2 / n1 * wRayLength * wRayDir3; // newRay.z -= max(view_distance.x - distance(focus_pos.xy, f_pos.xy), 0.0) * (1.0 + max(0.0, f_pos.z - focus_pos.z)); // f_light = 1.0; gl_Position = /* proj_mat * view_mat * */ all_mat * vec4(f_pos/*newRay*/, 1); // gl_Position.z = -gl_Position.z / gl_Position.w; // gl_Position.z = -gl_Position.z / gl_Position.w; // gl_Position.z = -gl_Position.z * gl_Position.w; // gl_Position.z = -gl_Position.z / 100.0; // gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); }