use { crate::{ comp::{Body, MovementState::*, Ori, PhysicsState, Pos, Scale, Stats, Vel}, event::{ServerEvent, EventBus}, state::DeltaTime, terrain::TerrainMap, vol::{ReadVol, Vox}, }, specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage}, vek::*, }; const GRAVITY: f32 = 9.81 * 4.0; const FRIC_GROUND: f32 = 0.15; const FRIC_AIR: f32 = 0.015; // Integrates forces, calculates the new velocity based off of the old velocity // dt = delta time // lv = linear velocity // damp = linear damping // Friction is a type of damping. fn integrate_forces(dt: f32, mut lv: Vec3, grav: f32, damp: f32) -> Vec3 { lv.z = (lv.z - grav * dt).max(-50.0); let linear_damp = (1.0 - dt * damp).max(0.0); lv * linear_damp } /// This system applies forces and calculates new positions and velocities. pub struct Sys; impl<'a> System<'a> for Sys { type SystemData = ( Entities<'a>, ReadExpect<'a, TerrainMap>, Read<'a, DeltaTime>, Read<'a, EventBus>, ReadStorage<'a, Scale>, ReadStorage<'a, Body>, WriteStorage<'a, PhysicsState>, WriteStorage<'a, Pos>, WriteStorage<'a, Vel>, WriteStorage<'a, Ori>, ); fn run( &mut self, ( entities, terrain, dt, event_bus, scales, bodies, mut physics_states, mut positions, mut velocities, mut orientations, ): Self::SystemData, ) { let mut event_emitter = event_bus.emitter(); // Apply movement inputs for (entity, scale, b, mut pos, mut vel, mut ori) in ( &entities, scales.maybe(), &bodies, &mut positions, &mut velocities, &mut orientations, ) .join() { let mut physics_state = physics_states.get(entity).cloned().unwrap_or_default(); let scale = scale.map(|s| s.0).unwrap_or(1.0); // Integrate forces // Friction is assumed to be a constant dependent on location let friction = 50.0 * if physics_state.on_ground { FRIC_GROUND } else { FRIC_AIR }; vel.0 = integrate_forces(dt.0, vel.0, GRAVITY, friction); // Basic collision with terrain let player_rad = 0.3 * scale; // half-width of the player's AABB let player_height = 1.5 * scale; // Probe distances let hdist = player_rad.ceil() as i32; let vdist = player_height.ceil() as i32; // Neighbouring blocks iterator let near_iter = (-hdist..=hdist) .map(move |i| (-hdist..=hdist).map(move |j| (0..=vdist).map(move |k| (i, j, k)))) .flatten() .flatten(); // Function for determining whether the player at a specific position collides with the ground let collision_with = |pos: Vec3, near_iter| { for (i, j, k) in near_iter { let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k); if terrain .get(block_pos) .map(|vox| vox.is_solid()) .unwrap_or(false) { let player_aabb = Aabb { min: pos + Vec3::new(-player_rad, -player_rad, 0.0), max: pos + Vec3::new(player_rad, player_rad, player_height), }; let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + 1.0, }; if player_aabb.collides_with_aabb(block_aabb) { return true; } } } false }; let was_on_ground = physics_state.on_ground; physics_state.on_ground = false; let mut on_ground = false; let mut attempts = 0; // Don't loop infinitely here // Don't move if we're not in a loaded chunk let pos_delta = if terrain .get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32))) .is_some() { vel.0 * dt.0 } else { Vec3::zero() }; // Don't jump too far at once let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3) .ceil() .max(1.0); let old_pos = pos.0; for _ in 0..increments as usize { pos.0 += pos_delta / increments; const MAX_ATTEMPTS: usize = 16; // While the player is colliding with the terrain... while collision_with(pos.0, near_iter.clone()) && attempts < MAX_ATTEMPTS { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-player_rad, -player_rad, 0.0), max: pos.0 + Vec3::new(player_rad, player_rad, player_height), }; // Determine the block that we are colliding with most (based on minimum collision axis) let (_block_pos, block_aabb) = near_iter .clone() // Calculate the block's position in world space .map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k)) // Calculate the AABB of the block .map(|block_pos| { ( block_pos, Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + 1.0, }, ) }) // Determine whether the block's AABB collides with the player's AABB .filter(|(_, block_aabb)| block_aabb.collides_with_aabb(player_aabb)) // Make sure the block is actually solid .filter(|(block_pos, _)| { terrain .get(*block_pos) .map(|vox| vox.is_solid()) .unwrap_or(false) }) // Find the maximum of the minimum collision axes (this bit is weird, trust me that it works) .max_by_key(|(_, block_aabb)| { ((player_aabb .collision_vector_with_aabb(*block_aabb) .map(|e| e.abs()) .product() + block_aabb.min.z) * 1_000_000.0) as i32 }) .expect("Collision detected, but no colliding blocks found!"); // Find the intrusion vector of the collision let dir = player_aabb.collision_vector_with_aabb(block_aabb); // Determine an appropriate resolution vector (i.e: the minimum distance needed to push out of the block) let max_axis = dir.map(|e| e.abs()).reduce_partial_min(); let resolve_dir = -dir.map(|e| { if e.abs().to_bits() == max_axis.to_bits() { e } else { 0.0 } }); // When the resolution direction is pointing upwards, we must be on the ground if resolve_dir.z > 0.0 && vel.0.z <= 0.0 { on_ground = true; if !was_on_ground { event_emitter.emit(ServerEvent::LandOnGround { entity, vel: vel.0 }); } } // When the resolution direction is non-vertical, we must be colliding with a wall // If the space above is free... if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), near_iter.clone()) // ...and we're being pushed out horizontally... && resolve_dir.z == 0.0 // ...and the vertical resolution direction is sufficiently great... && -dir.z > 0.1 // ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)... && (vel.0.z <= 0.0 || terrain .get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32)) .map(|vox| vox.is_solid()) .unwrap_or(false)) // ...and there is a collision with a block beneath our current hitbox... && collision_with( old_pos + resolve_dir - Vec3::unit_z() * 1.05, near_iter.clone(), ) { // ...block-hop! pos.0.z = (pos.0.z + 0.1).ceil(); on_ground = true; break; } else { // Correct the velocity vel.0 = vel.0.map2( resolve_dir, |e, d| if d * e.signum() < 0.0 { 0.0 } else { e }, ); } // Resolve the collision normally pos.0 += resolve_dir; attempts += 1; } if attempts == MAX_ATTEMPTS { pos.0 = old_pos; break; } } if on_ground { physics_state.on_ground = true; // If the space below us is free, then "snap" to the ground } else if collision_with(pos.0 - Vec3::unit_z() * 1.05, near_iter.clone()) && vel.0.z < 0.0 && vel.0.z > -1.5 && was_on_ground { pos.0.z = (pos.0.z - 0.05).floor(); physics_state.on_ground = true; } let _ = physics_states.insert(entity, physics_state); } // Apply pushback for (pos, scale, mut vel, _) in (&positions, scales.maybe(), &mut velocities, &bodies).join() { let scale = scale.map(|s| s.0).unwrap_or(1.0); for (pos_other, scale_other, _) in (&positions, scales.maybe(), &bodies).join() { let scale_other = scale_other.map(|s| s.0).unwrap_or(1.0); let diff = Vec2::::from(pos.0 - pos_other.0); let collision_dist = 0.95 * (scale + scale_other); if diff.magnitude_squared() > 0.0 && diff.magnitude_squared() < collision_dist.powf(2.0) && pos.0.z + 1.6 * scale > pos_other.0.z && pos.0.z < pos_other.0.z + 1.6 * scale_other { vel.0 += Vec3::from(diff.normalized()) * (collision_dist - diff.magnitude()) * 1.0; } } } } }