mod spatial_grid; use spatial_grid::SpatialGrid; use common::{ comp::{ body::ship::figuredata::{VoxelCollider, VOXEL_COLLIDER_MANIFEST}, BeamSegment, Body, CharacterState, Collider, Gravity, Mass, Mounting, Ori, PhysicsState, Pos, PosVelDefer, PreviousPhysCache, Projectile, Scale, Shockwave, Sticky, Vel, }, consts::{FRIC_GROUND, GRAVITY}, event::{EventBus, ServerEvent}, outcome::Outcome, resources::DeltaTime, terrain::{Block, TerrainGrid}, uid::Uid, vol::{BaseVol, ReadVol}, }; use common_base::{prof_span, span}; use common_ecs::{Job, Origin, ParMode, Phase, PhysicsMetrics, System}; use rayon::iter::ParallelIterator; use specs::{ shred::{ResourceId, World}, Entities, Entity, Join, ParJoin, Read, ReadExpect, ReadStorage, SystemData, Write, WriteExpect, WriteStorage, }; use std::ops::Range; use vek::*; pub const BOUYANCY: f32 = 1.0; // Friction values used for linear damping. They are unitless quantities. The // value of these quantities must be between zero and one. They represent the // amount an object will slow down within 1/60th of a second. Eg. if the // friction is 0.01, and the speed is 1.0, then after 1/60th of a second the // speed will be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ // 60. pub const FRIC_AIR: f32 = 0.0025; pub const FRIC_FLUID: f32 = 0.4; // Integrates forces, calculates the new velocity based off of the old velocity // dt = delta time // lv = linear velocity // damp = linear damping // Friction is a type of damping. fn integrate_forces(dt: f32, mut lv: Vec3, grav: f32, damp: f32) -> Vec3 { // Clamp dt to an effective 10 TPS, to prevent gravity from slamming the players // into the floor when stationary if other systems cause the server to lag // (as observed in the 0.9 release party). let dt = dt.min(0.1); // this is not linear damping, because it is proportional to the original // velocity this "linear" damping in in fact, quite exponential. and thus // must be interpolated accordingly let linear_damp = (1.0 - damp.min(1.0)).powf(dt * 60.0); // TODO: investigate if we can have air friction provide the neccessary limits // here lv.z = (lv.z - grav * dt).max(-80.0).min(lv.z); lv * linear_damp } fn calc_z_limit( char_state_maybe: Option<&CharacterState>, collider: Option<&Collider>, ) -> (f32, f32) { let modifier = if char_state_maybe.map_or(false, |c_s| c_s.is_dodge()) { 0.5 } else { 1.0 }; collider .map(|c| c.get_z_limits(modifier)) .unwrap_or((-0.5 * modifier, 0.5 * modifier)) } /// This system applies forces and calculates new positions and velocities. #[derive(Default)] pub struct Sys; #[derive(SystemData)] pub struct PhysicsRead<'a> { entities: Entities<'a>, uids: ReadStorage<'a, Uid>, terrain: ReadExpect<'a, TerrainGrid>, dt: Read<'a, DeltaTime>, event_bus: Read<'a, EventBus>, scales: ReadStorage<'a, Scale>, stickies: ReadStorage<'a, Sticky>, masses: ReadStorage<'a, Mass>, colliders: ReadStorage<'a, Collider>, gravities: ReadStorage<'a, Gravity>, mountings: ReadStorage<'a, Mounting>, projectiles: ReadStorage<'a, Projectile>, beams: ReadStorage<'a, BeamSegment>, shockwaves: ReadStorage<'a, Shockwave>, char_states: ReadStorage<'a, CharacterState>, bodies: ReadStorage<'a, Body>, character_states: ReadStorage<'a, CharacterState>, } #[derive(SystemData)] pub struct PhysicsWrite<'a> { physics_metrics: WriteExpect<'a, PhysicsMetrics>, physics_states: WriteStorage<'a, PhysicsState>, positions: WriteStorage<'a, Pos>, velocities: WriteStorage<'a, Vel>, pos_vel_defers: WriteStorage<'a, PosVelDefer>, orientations: WriteStorage<'a, Ori>, previous_phys_cache: WriteStorage<'a, PreviousPhysCache>, outcomes: Write<'a, Vec>, } #[derive(SystemData)] pub struct PhysicsData<'a> { read: PhysicsRead<'a>, write: PhysicsWrite<'a>, } impl<'a> PhysicsData<'a> { /// Add/reset physics state components fn reset(&mut self) { span!(_guard, "Add/reset physics state components"); for (entity, _, _, _, _) in ( &self.read.entities, &self.read.colliders, &self.write.positions, &self.write.velocities, &self.write.orientations, ) .join() { let _ = self .write .physics_states .entry(entity) .map(|e| e.or_insert_with(Default::default)); } } fn maintain_pushback_cache(&mut self) { span!(_guard, "Maintain pushback cache"); // Add PreviousPhysCache for all relevant entities for entity in ( &self.read.entities, &self.write.velocities, &self.write.positions, !&self.write.previous_phys_cache, !&self.read.mountings, !&self.read.beams, !&self.read.shockwaves, ) .join() .map(|(e, _, _, _, _, _, _)| e) .collect::>() { let _ = self .write .previous_phys_cache .insert(entity, PreviousPhysCache { velocity_dt: Vec3::zero(), center: Vec3::zero(), collision_boundary: 0.0, scale: 0.0, scaled_radius: 0.0, ori: Quaternion::identity(), }); } // Update PreviousPhysCache for (_, vel, position, mut phys_cache, collider, scale, cs, _, _, _) in ( &self.read.entities, &self.write.velocities, &self.write.positions, &mut self.write.previous_phys_cache, self.read.colliders.maybe(), self.read.scales.maybe(), self.read.char_states.maybe(), !&self.read.mountings, !&self.read.beams, !&self.read.shockwaves, ) .join() { let scale = scale.map(|s| s.0).unwrap_or(1.0); let z_limits = calc_z_limit(cs, collider); let z_limits = (z_limits.0 * scale, z_limits.1 * scale); let half_height = (z_limits.1 - z_limits.0) / 2.0; phys_cache.velocity_dt = vel.0 * self.read.dt.0; let entity_center = position.0 + Vec3::new(0.0, z_limits.0 + half_height, 0.0); let flat_radius = collider.map(|c| c.get_radius()).unwrap_or(0.5) * scale; let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt(); // Move center to the middle between OLD and OLD+VEL_DT so that we can reduce // the collision_boundary phys_cache.center = entity_center + phys_cache.velocity_dt / 2.0; phys_cache.collision_boundary = radius + (phys_cache.velocity_dt / 2.0).magnitude(); phys_cache.scale = scale; phys_cache.scaled_radius = flat_radius; } } fn construct_spatial_grid(&mut self) -> SpatialGrid { span!(_guard, "Construct spatial grid"); let PhysicsData { ref read, ref write, } = self; // NOTE: i32 places certain constraints on how far out collision works // NOTE: uses the radius of the entity and their current position rather than // the radius of their bounding sphere for the current frame of movement // because the nonmoving entity is what is collided against in the inner // loop of the pushback collision code // TODO: maintain frame to frame? (requires handling deletion) // TODO: if not maintaining frame to frame consider counting entities to // preallocate? // TODO: assess parallelizing (overhead might dominate here? would need to merge // the vecs in each hashmap) let lg2_cell_size = 5; let lg2_large_cell_size = 6; let radius_cutoff = 8; let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff); for (entity, pos, phys_cache, _, _, _, _, _) in ( &read.entities, &write.positions, &write.previous_phys_cache, write.velocities.mask(), !&read.projectiles, // Not needed because they are skipped in the inner loop below !&read.mountings, !&read.beams, !&read.shockwaves, ) .join() { // Note: to not get too fine grained we use a 2D grid for now let radius_2d = phys_cache.scaled_radius.ceil() as u32; let pos_2d = pos.0.xy().map(|e| e as i32); const POS_TRUNCATION_ERROR: u32 = 1; spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity); } spatial_grid } fn apply_pushback(&mut self, job: &mut Job, spatial_grid: &SpatialGrid) { span!(_guard, "Apply pushback"); job.cpu_stats.measure(ParMode::Rayon); let PhysicsData { ref read, ref mut write, } = self; let (positions, previous_phys_cache) = (&write.positions, &write.previous_phys_cache); let metrics = ( &read.entities, positions, &mut write.velocities, previous_phys_cache, read.masses.maybe(), read.colliders.maybe(), !&read.mountings, read.stickies.maybe(), &mut write.physics_states, // TODO: if we need to avoid collisions for other things consider moving whether it // should interact into the collider component or into a separate component read.projectiles.maybe(), read.char_states.maybe(), ) .par_join() .filter(|(_, _, _, _, _, _, _, sticky, physics, _, _)| { sticky.is_none() || (physics.on_wall.is_none() && !physics.on_ground) }) .map(|(e, p, v, vd, m, c, _, _, ph, pr, c_s)| (e, p, v, vd, m, c, ph, pr, c_s)) .map_init( || { prof_span!(guard, "physics e<>e rayon job"); guard }, |_guard, ( entity, pos, vel, previous_cache, mass, collider, physics, projectile, char_state_maybe, )| { let z_limits = calc_z_limit(char_state_maybe, collider); let mass = mass.map(|m| m.0).unwrap_or(previous_cache.scale); // Resets touch_entities in physics physics.touch_entities.clear(); let is_projectile = projectile.is_some(); let mut vel_delta = Vec3::zero(); let mut entity_entity_collision_checks = 0; let mut entity_entity_collisions = 0; let aabr = { let center = previous_cache.center.xy().map(|e| e as i32); let radius = previous_cache.collision_boundary.ceil() as i32; // From conversion of center above const CENTER_TRUNCATION_ERROR: i32 = 1; let max_dist = radius + CENTER_TRUNCATION_ERROR; Aabr { min: center - max_dist, max: center + max_dist, } }; spatial_grid .in_aabr(aabr) .filter_map(|entity| { read.uids .get(entity) .zip(positions.get(entity)) .zip(previous_phys_cache.get(entity)) .map(|((uid, pos), previous_cache)| { ( entity, uid, pos, previous_cache, read.masses.get(entity), read.colliders.get(entity), read.char_states.get(entity), ) }) }) .for_each( |( entity_other, other, pos_other, previous_cache_other, mass_other, collider_other, char_state_other_maybe, )| { let collision_boundary = previous_cache.collision_boundary + previous_cache_other.collision_boundary; if previous_cache .center .distance_squared(previous_cache_other.center) > collision_boundary.powi(2) || entity == entity_other { return; } let collision_dist = previous_cache.scaled_radius + previous_cache_other.scaled_radius; let z_limits_other = calc_z_limit(char_state_other_maybe, collider_other); let mass_other = mass_other .map(|m| m.0) .unwrap_or(previous_cache_other.scale); // This check after the pos check, as we currently don't have // that many // massless entites [citation needed] if mass_other == 0.0 { return; } entity_entity_collision_checks += 1; const MIN_COLLISION_DIST: f32 = 0.3; let increments = ((previous_cache.velocity_dt - previous_cache_other.velocity_dt) .magnitude() / MIN_COLLISION_DIST) .max(1.0) .ceil() as usize; let step_delta = 1.0 / increments as f32; let mut collided = false; for i in 0..increments { let factor = i as f32 * step_delta; let pos = pos.0 + previous_cache.velocity_dt * factor; let pos_other = pos_other.0 + previous_cache_other.velocity_dt * factor; let diff = pos.xy() - pos_other.xy(); if diff.magnitude_squared() <= collision_dist.powi(2) && pos.z + z_limits.1 * previous_cache.scale >= pos_other.z + z_limits_other.0 * previous_cache_other.scale && pos.z + z_limits.0 * previous_cache.scale <= pos_other.z + z_limits_other.1 * previous_cache_other.scale { if !collided { physics.touch_entities.insert(*other); entity_entity_collisions += 1; } // Don't apply repulsive force to projectiles or if // we're // colliding // with a terrain-like entity, or if we are a // terrain-like // entity if diff.magnitude_squared() > 0.0 && !is_projectile && !matches!( collider_other, Some(Collider::Voxel { .. }) ) && !matches!(collider, Some(Collider::Voxel { .. })) { let force = 400.0 * (collision_dist - diff.magnitude()) * mass_other / (mass + mass_other); vel_delta += Vec3::from(diff.normalized()) * force * step_delta; } collided = true; } } }, ); // Change velocity vel.0 += vel_delta * read.dt.0; // Metrics PhysicsMetrics { entity_entity_collision_checks, entity_entity_collisions, } }, ) .reduce(PhysicsMetrics::default, |old, new| PhysicsMetrics { entity_entity_collision_checks: old.entity_entity_collision_checks + new.entity_entity_collision_checks, entity_entity_collisions: old.entity_entity_collisions + new.entity_entity_collisions, }); write.physics_metrics.entity_entity_collision_checks = metrics.entity_entity_collision_checks; write.physics_metrics.entity_entity_collisions = metrics.entity_entity_collisions; } fn construct_voxel_collider_spatial_grid(&mut self) -> SpatialGrid { span!(_guard, "Construct voxel collider spatial grid"); let PhysicsData { ref read, ref write, } = self; // NOTE: i32 places certain constraints on how far out collision works // NOTE: uses the radius of the entity and their current position rather than // the radius of their bounding sphere for the current frame of movement // because the nonmoving entity is what is collided against in the inner // loop of the pushback collision code // TODO: optimize these parameters (especially radius cutoff) let lg2_cell_size = 7; // 128 let lg2_large_cell_size = 8; // 256 let radius_cutoff = 64; let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff); // TODO: give voxel colliders their own component type for (entity, pos, collider, ori) in ( &read.entities, &write.positions, &read.colliders, &write.orientations, ) .join() { let voxel_id = match collider { Collider::Voxel { id } => id, _ => continue, }; if let Some(voxel_collider) = VOXEL_COLLIDER_MANIFEST.read().colliders.get(&*voxel_id) { let sphere = voxel_collider_bounding_sphere(voxel_collider, pos, ori); let radius = sphere.radius.ceil() as u32; let pos_2d = sphere.center.xy().map(|e| e as i32); const POS_TRUNCATION_ERROR: u32 = 1; spatial_grid.insert(pos_2d, radius + POS_TRUNCATION_ERROR, entity); } } spatial_grid } fn handle_movement_and_terrain( &mut self, job: &mut Job, voxel_collider_spatial_grid: &SpatialGrid, ) { let PhysicsData { ref read, ref mut write, } = self; prof_span!(guard, "insert PosVelDefer"); // NOTE: keep in sync with join below ( &read.entities, read.colliders.mask(), &write.positions, &write.velocities, write.orientations.mask(), write.physics_states.mask(), !&write.pos_vel_defers, // This is the one we are adding write.previous_phys_cache.mask(), !&read.mountings, ) .join() .map(|t| (t.0, *t.2, *t.3)) .collect::>() .into_iter() .for_each(|(entity, pos, vel)| { let _ = write.pos_vel_defers.insert(entity, PosVelDefer { pos: Some(pos), vel: Some(vel), }); }); drop(guard); // Apply movement inputs span!(guard, "Apply movement and terrain collision"); let (positions, velocities, previous_phys_cache, orientations) = ( &write.positions, &mut write.velocities, &write.previous_phys_cache, &write.orientations, ); // First pass: update velocity using air resistance and gravity for each entity. // We do this in a first pass because it helps keep things more stable for // entities that are anchored to other entities (such as airships). ( &read.entities, positions, velocities, &write.physics_states, !&read.mountings, ) .par_join() .for_each_init( || { prof_span!(guard, "velocity update rayon job"); guard }, |_guard, (entity, pos, vel, physics_state, _)| { let in_loaded_chunk = read .terrain .get_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32))) .is_some(); // Integrate forces // Friction is assumed to be a constant dependent on location let friction = if physics_state.on_ground { 0.0 } else { FRIC_AIR } // .max(if physics_state.on_ground { // FRIC_GROUND // } else { // 0.0 // }) .max(if physics_state.in_liquid.is_some() { FRIC_FLUID } else { 0.0 }); let downward_force = if !in_loaded_chunk { 0.0 // No gravity in unloaded chunks } else if physics_state .in_liquid .map(|depth| depth > 0.75) .unwrap_or(false) { (1.0 - BOUYANCY) * GRAVITY } else { GRAVITY } * read.gravities.get(entity).map(|g| g.0).unwrap_or_default(); vel.0 = integrate_forces(read.dt.0, vel.0, downward_force, friction); }, ); let velocities = &write.velocities; // Second pass: resolve collisions let (land_on_grounds, mut outcomes) = ( &read.entities, read.scales.maybe(), read.stickies.maybe(), &read.colliders, positions, velocities, orientations, read.bodies.maybe(), read.character_states.maybe(), &mut write.physics_states, &mut write.pos_vel_defers, previous_phys_cache, !&read.mountings, ) .par_join() .map_init( || { prof_span!(guard, "physics e<>t rayon job"); guard }, |_guard, ( entity, scale, sticky, collider, pos, vel, _ori, body, character_state, mut physics_state, pos_vel_defer, _previous_cache, _, )| { let mut land_on_ground = None; let mut outcomes = Vec::new(); // Defer the writes of positions and velocities to allow an inner loop over // terrain-like entities let old_vel = *vel; let mut vel = *vel; let scale = if let Collider::Voxel { .. } = collider { scale.map(|s| s.0).unwrap_or(1.0) } else { // TODO: Use scale & actual proportions when pathfinding is good // enough to manage irregular entity sizes 1.0 }; let in_loaded_chunk = read .terrain .get_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32))) .is_some(); // Don't move if we're not in a loaded chunk let pos_delta = if in_loaded_chunk { vel.0 * read.dt.0 } else { Vec3::zero() }; // What's going on here? Because collisions need to be resolved against multiple // colliders, this code takes the current position and // propagates it forward according to velocity to find a // 'target' position. This is where we'd ideally end up at the end of the tick, // assuming no collisions. Then, we refine this target by // stepping from the original position to the target for // every obstacle, refining the target position as we go. It's not perfect, but // it works pretty well in practice. Oddities can occur on // the intersection between multiple colliders, but it's not // like any game physics system resolves these sort of things well anyway. At // the very least, we don't do things that result in glitchy // velocities or entirely broken position snapping. let mut tgt_pos = pos.0 + pos_delta; let was_on_ground = physics_state.on_ground; let block_snap = body.map_or(false, |body| body.jump_impulse().is_some()); let climbing = character_state.map_or(false, |cs| matches!(cs, CharacterState::Climb(_))); match &collider { Collider::Voxel { .. } => { // for now, treat entities with voxel colliders as their bounding // cylinders for the purposes of colliding them with terrain // Additionally, multiply radius by 0.1 to make the cylinder smaller to // avoid lag let radius = collider.get_radius() * scale * 0.1; let (z_min, z_max) = collider.get_z_limits(scale); let mut cpos = *pos; let cylinder = (radius, z_min, z_max); box_voxel_collision( cylinder, &*read.terrain, entity, &mut cpos, tgt_pos, &mut vel, &mut physics_state, Vec3::zero(), &read.dt, was_on_ground, block_snap, climbing, |entity, vel| land_on_ground = Some((entity, vel)), ); tgt_pos = cpos.0; }, Collider::Box { radius, z_min, z_max, } => { // Scale collider let radius = radius.min(0.45) * scale; let z_min = *z_min * scale; let z_max = z_max.clamped(1.2, 1.95) * scale; let cylinder = (radius, z_min, z_max); let mut cpos = *pos; box_voxel_collision( cylinder, &*read.terrain, entity, &mut cpos, tgt_pos, &mut vel, &mut physics_state, Vec3::zero(), &read.dt, was_on_ground, block_snap, climbing, |entity, vel| land_on_ground = Some((entity, vel)), ); // Sticky things shouldn't move when on a surface if physics_state.on_surface().is_some() && sticky.is_some() { vel.0 = physics_state.ground_vel; } tgt_pos = cpos.0; }, Collider::Point => { let mut pos = *pos; // If the velocity is exactly 0, a raycast may not pick up the current // block. Handle this. let (dist, block) = if let Some(block) = read .terrain .get(pos.0.map(|e| e.floor() as i32)) .ok() .filter(|b| b.is_filled()) // TODO: `is_solid`, when arrows are special-cased { (0.0, Some(block)) } else { let (dist, block) = read .terrain .ray(pos.0, pos.0 + pos_delta) .until(|block: &Block| block.is_filled()) .ignore_error() .cast(); (dist, block.unwrap()) // Can't fail since we do ignore_error above }; pos.0 += pos_delta.try_normalized().unwrap_or_else(Vec3::zero) * dist; // TODO: Not all projectiles should count as sticky! if sticky.is_some() { if let Some((projectile, body)) = read .projectiles .get(entity) .filter(|_| vel.0.magnitude_squared() > 1.0 && block.is_some()) .zip(read.bodies.get(entity).copied()) { outcomes.push(Outcome::ProjectileHit { pos: pos.0, body, vel: vel.0, source: projectile.owner, target: None, }); } } if block.is_some() { let block_center = pos.0.map(|e| e.floor()) + 0.5; let block_rpos = (pos.0 - block_center) .try_normalized() .unwrap_or_else(Vec3::zero); // See whether we're on the top/bottom of a block, or the side if block_rpos.z.abs() > block_rpos.xy().map(|e| e.abs()).reduce_partial_max() { if block_rpos.z > 0.0 { physics_state.on_ground = true; } else { physics_state.on_ceiling = true; } vel.0.z = 0.0; } else { physics_state.on_wall = Some(if block_rpos.x.abs() > block_rpos.y.abs() { vel.0.x = 0.0; Vec3::unit_x() * -block_rpos.x.signum() } else { vel.0.y = 0.0; Vec3::unit_y() * -block_rpos.y.signum() }); } // Sticky things shouldn't move if sticky.is_some() { vel.0 = physics_state.ground_vel; } } physics_state.in_liquid = read .terrain .get(pos.0.map(|e| e.floor() as i32)) .ok() .and_then(|vox| vox.is_liquid().then_some(1.0)); tgt_pos = pos.0; }, } // Compute center and radius of tick path bounding sphere for the entity // for broad checks of whether it will collide with a voxel collider let path_sphere = { // TODO: duplicated with maintain_pushback_cache, make a common function // to call to compute all this info? let z_limits = calc_z_limit(character_state, Some(collider)); let z_limits = (z_limits.0 * scale, z_limits.1 * scale); let half_height = (z_limits.1 - z_limits.0) / 2.0; let entity_center = pos.0 + (z_limits.0 + half_height) * Vec3::unit_z(); let path_center = entity_center + pos_delta / 2.0; let flat_radius = collider.get_radius() * scale; let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt(); let path_bounding_radius = radius + (pos_delta / 2.0).magnitude(); Sphere { center: path_center, radius: path_bounding_radius, } }; // Collide with terrain-like entities let aabr = { let center = path_sphere.center.xy().map(|e| e as i32); let radius = path_sphere.radius.ceil() as i32; // From conversion of center above const CENTER_TRUNCATION_ERROR: i32 = 1; let max_dist = radius + CENTER_TRUNCATION_ERROR; Aabr { min: center - max_dist, max: center + max_dist, } }; voxel_collider_spatial_grid .in_aabr(aabr) .filter_map(|entity| { positions .get(entity) .zip(velocities.get(entity)) .zip(previous_phys_cache.get(entity)) .zip(read.colliders.get(entity)) .zip(orientations.get(entity)) .map(|((((pos, vel), previous_cache), collider), ori)| { (entity, pos, vel, previous_cache, collider, ori) }) }) .for_each( |( entity_other, pos_other, vel_other, previous_cache_other, collider_other, ori_other, )| { if entity == entity_other { return; } let voxel_id = if let Collider::Voxel { id } = collider_other { id } else { return; }; // use bounding cylinder regardless of our collider // TODO: extract point-terrain collision above to its own // function let radius = collider.get_radius(); let (z_min, z_max) = collider.get_z_limits(1.0); let radius = radius.min(0.45) * scale; let z_min = z_min * scale; let z_max = z_max.clamped(1.2, 1.95) * scale; if let Some(voxel_collider) = VOXEL_COLLIDER_MANIFEST.read().colliders.get(voxel_id) { // TODO: cache/precompute sphere? let voxel_sphere = voxel_collider_bounding_sphere( voxel_collider, pos_other, ori_other, ); // Early check if voxel_sphere.center.distance_squared(path_sphere.center) > (voxel_sphere.radius + path_sphere.radius).powi(2) { return; } let mut physics_state_delta = physics_state.clone(); // deliberately don't use scale yet here, because the // 11.0/0.8 thing is // in the comp::Scale for visual reasons let mut cpos = *pos; let wpos = cpos.0; // TODO: Cache the matrices here to avoid recomputing let transform_from = Mat4::::translation_3d(pos_other.0 - wpos) * Mat4::from(ori_other.to_quat()) * Mat4::::translation_3d( voxel_collider.translation, ); let transform_to = transform_from.inverted(); let ori_from = Mat4::from(ori_other.to_quat()); let ori_to = ori_from.inverted(); // The velocity of the collider, taking into account // orientation. let wpos_rel = (Mat4::::translation_3d(pos_other.0) * Mat4::from(ori_other.to_quat()) * Mat4::::translation_3d(voxel_collider.translation)) .inverted() .mul_point(wpos); let wpos_last = (Mat4::::translation_3d(pos_other.0) * Mat4::from(previous_cache_other.ori) * Mat4::::translation_3d(voxel_collider.translation)) .mul_point(wpos_rel); let vel_other = vel_other.0 + (wpos - wpos_last) / read.dt.0; cpos.0 = transform_to.mul_point(Vec3::zero()); vel.0 = ori_to.mul_direction(vel.0 - vel_other); let cylinder = (radius, z_min, z_max); box_voxel_collision( cylinder, &voxel_collider.dyna, entity, &mut cpos, transform_to.mul_point(tgt_pos - wpos), &mut vel, &mut physics_state_delta, ori_to.mul_direction(vel_other), &read.dt, was_on_ground, block_snap, climbing, |entity, vel| { land_on_ground = Some((entity, Vel(ori_from.mul_direction(vel.0)))); }, ); cpos.0 = transform_from.mul_point(cpos.0) + wpos; vel.0 = ori_from.mul_direction(vel.0) + vel_other; tgt_pos = cpos.0; // union in the state updates, so that the state isn't just // based on the most // recent terrain that collision was attempted with if physics_state_delta.on_ground { physics_state.ground_vel = vel_other; } physics_state.on_ground |= physics_state_delta.on_ground; physics_state.on_ceiling |= physics_state_delta.on_ceiling; physics_state.on_wall = physics_state.on_wall.or_else(|| { physics_state_delta .on_wall .map(|dir| ori_from.mul_direction(dir)) }); physics_state.in_liquid = match ( physics_state.in_liquid, physics_state_delta.in_liquid, ) { // this match computes `x <|> y <|> liftA2 max x y` (Some(x), Some(y)) => Some(x.max(y)), (x @ Some(_), _) => x, (_, y @ Some(_)) => y, _ => None, }; } }, ); if tgt_pos != pos.0 { pos_vel_defer.pos = Some(Pos(tgt_pos)); } else { pos_vel_defer.pos = None; } if vel != old_vel { pos_vel_defer.vel = Some(vel); } else { pos_vel_defer.vel = None; } (land_on_ground, outcomes) }, ) .fold( || (Vec::new(), Vec::new()), |(mut land_on_grounds, mut all_outcomes), (land_on_ground, mut outcomes)| { land_on_ground.map(|log| land_on_grounds.push(log)); all_outcomes.append(&mut outcomes); (land_on_grounds, all_outcomes) }, ) .reduce( || (Vec::new(), Vec::new()), |(mut land_on_grounds_a, mut outcomes_a), (mut land_on_grounds_b, mut outcomes_b)| { land_on_grounds_a.append(&mut land_on_grounds_b); outcomes_a.append(&mut outcomes_b); (land_on_grounds_a, outcomes_a) }, ); drop(guard); job.cpu_stats.measure(ParMode::Single); write.outcomes.append(&mut outcomes); prof_span!(guard, "write deferred pos and vel"); for (_, pos, vel, pos_vel_defer) in ( &read.entities, &mut write.positions, &mut write.velocities, &mut write.pos_vel_defers, ) .join() { if let Some(new_pos) = pos_vel_defer.pos.take() { *pos = new_pos; } if let Some(new_vel) = pos_vel_defer.vel.take() { *vel = new_vel; } } drop(guard); prof_span!(guard, "record ori into phys_cache"); for (ori, previous_phys_cache) in (&write.orientations, &mut write.previous_phys_cache).join() { previous_phys_cache.ori = ori.to_quat(); } drop(guard); let mut event_emitter = read.event_bus.emitter(); land_on_grounds.into_iter().for_each(|(entity, vel)| { event_emitter.emit(ServerEvent::LandOnGround { entity, vel: vel.0 }); }); } } impl<'a> System<'a> for Sys { type SystemData = PhysicsData<'a>; const NAME: &'static str = "phys"; const ORIGIN: Origin = Origin::Common; const PHASE: Phase = Phase::Create; fn run(job: &mut Job, mut psd: Self::SystemData) { psd.reset(); // Apply pushback // // Note: We now do this first because we project velocity ahead. This is slighty // imperfect and implies that we might get edge-cases where entities // standing right next to the edge of a wall may get hit by projectiles // fired into the wall very close to them. However, this sort of thing is // already possible with poorly-defined hitboxes anyway so it's not too // much of a concern. // // If this situation becomes a problem, this code should be integrated with the // terrain collision code below, although that's not trivial to do since // it means the step needs to take into account the speeds of both // entities. psd.maintain_pushback_cache(); let spatial_grid = psd.construct_spatial_grid(); psd.apply_pushback(job, &spatial_grid); let voxel_collider_spatial_grid = psd.construct_voxel_collider_spatial_grid(); psd.handle_movement_and_terrain(job, &voxel_collider_spatial_grid); } } #[allow(clippy::too_many_arguments)] fn box_voxel_collision<'a, T: BaseVol + ReadVol>( cylinder: (f32, f32, f32), terrain: &'a T, entity: Entity, pos: &mut Pos, tgt_pos: Vec3, vel: &mut Vel, physics_state: &mut PhysicsState, ground_vel: Vec3, dt: &DeltaTime, was_on_ground: bool, block_snap: bool, climbing: bool, mut land_on_ground: impl FnMut(Entity, Vel), ) { let (radius, z_min, z_max) = cylinder; // Probe distances let hdist = radius.ceil() as i32; // Neighbouring blocks iterator let near_iter = (-hdist..hdist + 1) .map(move |i| { (-hdist..hdist + 1).map(move |j| { (1 - Block::MAX_HEIGHT.ceil() as i32 + z_min.floor() as i32 ..z_max.ceil() as i32 + 1) .map(move |k| (i, j, k)) }) }) .flatten() .flatten(); // Function for iterating over the blocks the player at a specific position // collides with fn collision_iter<'a, T: BaseVol + ReadVol>( pos: Vec3, terrain: &'a T, hit: &'a impl Fn(&Block) -> bool, height: &'a impl Fn(&Block) -> f32, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> impl Iterator> + 'a { near_iter.filter_map(move |(i, j, k)| { let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k); if let Some(block) = terrain.get(block_pos).ok().copied().filter(hit) { let player_aabb = Aabb { min: pos + Vec3::new(-radius, -radius, z_range.start), max: pos + Vec3::new(radius, radius, z_range.end), }; let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, height(&block)), }; if player_aabb.collides_with_aabb(block_aabb) { return Some(block_aabb); } } None }) } let z_range = z_min..z_max; // Function for determining whether the player at a specific position collides // with blocks with the given criteria fn collision_with<'a, T: BaseVol + ReadVol>( pos: Vec3, terrain: &'a T, hit: impl Fn(&Block) -> bool, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> bool { collision_iter( pos, terrain, &|block| block.is_solid() && hit(block), &Block::solid_height, near_iter, radius, z_range, ) .next() .is_some() } physics_state.on_ground = false; let mut on_ground = false; let mut on_ceiling = false; let mut attempts = 0; // Don't loop infinitely here let mut pos_delta = tgt_pos - pos.0; // Don't jump too far at once let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3) .ceil() .max(1.0); let old_pos = pos.0; fn block_true(_: &Block) -> bool { true } for _ in 0..increments as usize { pos.0 += pos_delta / increments; const MAX_ATTEMPTS: usize = 16; // While the player is colliding with the terrain... while let Some((_block_pos, block_aabb, block_height)) = (attempts < MAX_ATTEMPTS).then(|| { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-radius, -radius, z_min), max: pos.0 + Vec3::new(radius, radius, z_max), }; // Determine the block that we are colliding with most (based on minimum // collision axis) (if we are colliding with one) near_iter .clone() // Calculate the block's position in world space .map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k)) // Make sure the block is actually solid .filter_map(|block_pos| { terrain .get(block_pos) .ok() .filter(|block| block.is_solid()) .map(|block| (block_pos, block)) }) // Calculate block AABB .map(|(block_pos, block)| { ( block_pos, Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()), }, block.solid_height(), ) }) // Determine whether the block's AABB collides with the player's AABB .filter(|(_, block_aabb, _)| block_aabb.collides_with_aabb(player_aabb)) // Find the maximum of the minimum collision axes (this bit is weird, trust me that it works) .min_by_key(|(_, block_aabb, _)| { ordered_float::OrderedFloat((block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5) .map(f32::abs) .sum()) }) }).flatten() { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-radius, -radius, z_min), max: pos.0 + Vec3::new(radius, radius, z_max), }; // Find the intrusion vector of the collision let dir = player_aabb.collision_vector_with_aabb(block_aabb); // Determine an appropriate resolution vector (i.e: the minimum distance // needed to push out of the block) let max_axis = dir.map(|e| e.abs()).reduce_partial_min(); let resolve_dir = -dir.map(|e| { if e.abs().to_bits() == max_axis.to_bits() { e } else { 0.0 } }); // When the resolution direction is pointing upwards, we must be on the // ground if resolve_dir.z > 0.0 /* && vel.0.z <= 0.0 */ { on_ground = true; if !was_on_ground { land_on_ground(entity, *vel); } } else if resolve_dir.z < 0.0 && vel.0.z >= 0.0 { on_ceiling = true; } // When the resolution direction is non-vertical, we must be colliding // with a wall If we're being pushed out horizontally... if resolve_dir.z == 0.0 // ...and the vertical resolution direction is sufficiently great... && dir.z < -0.1 // ...and the space above is free... && !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), &terrain, block_true, near_iter.clone(), radius, z_range.clone()) // ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)... // && terrain // .get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32)) // .map(|block| block.is_solid()) // .unwrap_or(false) // ...and there is a collision with a block beneath our current hitbox... && collision_with( pos.0 + resolve_dir - Vec3::unit_z() * 1.25, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) { // ...block-hop! pos.0.z = (pos.0.z + 0.1).floor() + block_height; vel.0.z = vel.0.z.max(0.0); // Push the character on to the block very slightly to avoid jitter due to imprecision if (vel.0 * resolve_dir).xy().magnitude_squared() < 1.0f32.powi(2) { pos.0 -= resolve_dir.normalized() * 0.05; } on_ground = true; break; } else { // Correct the velocity vel.0 = vel.0.map2( resolve_dir, |e, d| { if d * e.signum() < 0.0 { 0.0 } else { e } }, ); pos_delta *= resolve_dir.map(|e| if e != 0.0 { 0.0 } else { 1.0 }); } // Resolve the collision normally pos.0 += resolve_dir; attempts += 1; } if attempts == MAX_ATTEMPTS { vel.0 = Vec3::zero(); pos.0 = old_pos; break; } } if on_ceiling { physics_state.on_ceiling = true; } if on_ground { physics_state.on_ground = true; // If the space below us is free, then "snap" to the ground } else if collision_with( pos.0 - Vec3::unit_z() * 1.1, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) && vel.0.z <= 0.0 && was_on_ground && block_snap { let snap_height = terrain .get(Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.1).map(|e| e.floor() as i32)) .ok() .filter(|block| block.is_solid()) .map(|block| block.solid_height()) .unwrap_or(0.0); vel.0.z = 0.0; pos.0.z = (pos.0.z - 0.1).floor() + snap_height; physics_state.on_ground = true; } let player_aabb = Aabb { min: pos.0 + Vec3::new(-radius, -radius, z_range.start), max: pos.0 + Vec3::new(radius, radius, z_range.end), }; let player_voxel_pos = pos.0.map(|e| e.floor() as i32); let dirs = [ Vec3::unit_x(), Vec3::unit_y(), -Vec3::unit_x(), -Vec3::unit_y(), ]; let player_wall_aabbs = dirs.map(|dir| { let pos = pos.0 + dir * 0.01; Aabb { min: pos + Vec3::new(-radius, -radius, z_range.start), max: pos + Vec3::new(radius, radius, z_range.end), } }); // Find liquid immersion and wall collision all in one round of iteration let mut max_liquid_z = None::; let mut wall_dir_collisions = [false; 4]; near_iter.for_each(|(i, j, k)| { let block_pos = player_voxel_pos + Vec3::new(i, j, k); if let Some(block) = terrain.get(block_pos).ok().copied() { // Check for liquid blocks if block.is_liquid() { let liquid_aabb = Aabb { min: block_pos.map(|e| e as f32), // The liquid part of a liquid block always extends 1 block high. max: block_pos.map(|e| e as f32) + Vec3::one(), }; if player_aabb.collides_with_aabb(liquid_aabb) { max_liquid_z = Some(match max_liquid_z { Some(z) => z.max(liquid_aabb.max.z), None => liquid_aabb.max.z, }); } } // Check for walls if block.is_solid() { let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()), }; for dir in 0..4 { if player_wall_aabbs[dir].collides_with_aabb(block_aabb) { wall_dir_collisions[dir] = true; } } } } }); // Use wall collision results to determine if we are against a wall let mut on_wall = None; for dir in 0..4 { if wall_dir_collisions[dir] { on_wall = Some(match on_wall { Some(acc) => acc + dirs[dir], None => dirs[dir], }); } } physics_state.on_wall = on_wall; if physics_state.on_ground || (physics_state.on_wall.is_some() && climbing) { vel.0 *= (1.0 - FRIC_GROUND.min(1.0)).powf(dt.0 * 60.0); physics_state.ground_vel = ground_vel; } // Set in_liquid state physics_state.in_liquid = max_liquid_z.map(|max_z| max_z - pos.0.z); } fn voxel_collider_bounding_sphere( voxel_collider: &VoxelCollider, pos: &Pos, ori: &Ori, ) -> Sphere { let origin_offset = voxel_collider.translation; use common::vol::SizedVol; let lower_bound = voxel_collider.dyna.lower_bound().map(|e| e as f32); let upper_bound = voxel_collider.dyna.upper_bound().map(|e| e as f32); let center = (lower_bound + upper_bound) / 2.0; // Compute vector from the origin (where pos value corresponds to) and the model // center let center_offset = center + origin_offset; // Rotate let oriented_center_offset = ori.local_to_global(center_offset); // Add to pos to get world coordinates of the center let wpos_center = oriented_center_offset + pos.0; // Note: to not get too fine grained we use a 2D grid for now const SPRITE_AND_MAYBE_OTHER_THINGS: f32 = 4.0; let radius = ((upper_bound - lower_bound) / 2.0 + Vec3::broadcast(SPRITE_AND_MAYBE_OTHER_THINGS)) .magnitude(); Sphere { center: wpos_center, radius, } }