#version 420 core #include #define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION) #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN // Must come before includes #define IS_POSTPROCESS #include // Note: The sampler uniform is declared here because it differs for MSAA #include #include #include #include // This *MUST* come after `cloud.glsl`: it contains a function that depends on `cloud.glsl` when clouds are enabled #include #include layout(set = 2, binding = 0) uniform texture2D t_src_color; layout(set = 2, binding = 1) uniform sampler s_src_color; layout(set = 2, binding = 2) uniform texture2D t_src_depth; layout(set = 2, binding = 3) uniform sampler s_src_depth; layout(location = 0) in vec2 uv; layout (std140, set = 2, binding = 4) uniform u_locals { mat4 all_mat_inv; }; layout(location = 0) out vec4 tgt_color; vec3 wpos_at(vec2 uv) { uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0); float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x; //float buf_depth = texture(sampler2D(t_src_depth, s_src_depth), uv).x; vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0); vec4 view_space = all_mat_inv * clip_space; view_space /= view_space.w; if (buf_depth == 0.0) { vec3 direction = normalize(view_space.xyz); return direction.xyz * 524288.0625 + cam_pos.xyz; } else { return view_space.xyz; } } float depth_at(vec2 uv) { uvec2 sz = textureSize(sampler2D(t_src_depth, s_src_depth), 0); float buf_depth = texelFetch(sampler2D(t_src_depth, s_src_depth), clamp(ivec2(uv * sz), ivec2(0), ivec2(sz) - 1), 0).x; if (buf_depth == 0.0) { return 524288.0; } else { vec4 clip_space = vec4((uv * 2.0 - 1.0) * vec2(1, -1), buf_depth, 1.0); vec4 view_space = all_mat_inv * clip_space; view_space /= view_space.w; return -(view_mat * view_space).z; } } void main() { vec4 color = texture(sampler2D(t_src_color, s_src_color), uv); #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(color.rgb, 1); return; #endif vec3 wpos = wpos_at(uv); float dist = distance(wpos, cam_pos.xyz); vec3 dir = (wpos - cam_pos.xyz) / dist; // Apply clouds float cloud_blend = 1.0; if (color.a < 1.0 && medium.x != MEDIUM_WATER) { cloud_blend = 1.0 - color.a; #ifdef EXPERIMENTAL_SCREENSPACEREFLECTIONS if (dir.z < 0.0) { #if (FLUID_MODE == FLUID_MODE_CHEAP) vec2 nz = vec2(0); #else vec2 nz = (vec2( noise_3d(vec3((wpos.xy + focus_off.xy) * 0.1, tick.x * 0.2 + wpos.x * 0.01)).x, noise_3d(vec3((wpos.yx + focus_off.yx) * 0.1, tick.x * 0.2 + wpos.y * 0.01)).x ) - 0.5) * 5.0; #endif vec3 surf_norm = normalize(vec3(nz * 0.03 / (1.0 + dist * 0.1), 1)); vec3 refl_dir = reflect(dir, surf_norm); vec4 clip = (all_mat * vec4(cam_pos.xyz + refl_dir, 1.0)); vec2 new_uv = (clip.xy / max(clip.w, 0)) * 0.5 * vec2(1, -1) + 0.5; #ifdef EXPERIMENTAL_SCREENSPACEREFLECTIONSCASTING vec3 ray_end = wpos + refl_dir * 5.0 * dist; // Trace through the screen-space depth buffer to find the ray intersection const int MAIN_ITERS = 64; for (int i = 0; i < MAIN_ITERS; i ++) { float t = float(i) / float(MAIN_ITERS); // TODO: Trace in screen space, not world space vec3 swpos = mix(wpos, ray_end, t); vec3 svpos = (view_mat * vec4(swpos, 1)).xyz; vec4 clippos = proj_mat * vec4(svpos, 1); vec2 suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5; float d = -depth_at(suv); if (d < svpos.z * 0.8 && d > svpos.z * 0.999) { // Don't cast into water! if (texture(sampler2D(t_src_color, s_src_color), suv).a >= 1.0) { /* t -= 1.0 / float(MAIN_ITERS); */ // Do a bit of extra iteration to try to refine the estimate const int ITERS = 8; float diff = 1.0 / float(MAIN_ITERS); for (int i = 0; i < ITERS; i ++) { vec3 swpos = mix(wpos, ray_end, t); svpos = (view_mat * vec4(swpos, 1)).xyz; vec4 clippos = proj_mat * vec4(svpos, 1); suv = (clippos.xy / clippos.w) * 0.5 * vec2(1, -1) + 0.5; float d = -depth_at(suv); t += ((d > svpos.z * 0.999) ? -1.0 : 1.0) * diff; diff *= 0.5; } // Small offset to push us into obscured territory new_uv = suv - vec2(0, 0.001); break; } } } #endif new_uv = clamp(new_uv, vec2(0), vec2(1)); vec3 new_wpos = wpos_at(new_uv); float new_dist = distance(new_wpos, cam_pos.xyz); float merge = min( // Off-screen merge factor clamp((1.0 - abs(new_uv.y - 0.5) * 2) * 3.0, 0, 1), // Depth merge factor clamp((new_dist - dist * 0.5) / (dist * 0.5), 0.0, 1.0) ); if (merge > 0.0) { vec3 new_col = texture(sampler2D(t_src_color, s_src_color), new_uv).rgb; new_col = get_cloud_color(new_col.rgb, refl_dir, wpos, time_of_day.x, distance(new_wpos, wpos.xyz), 1.0); color.rgb = mix(color.rgb, new_col, merge * (1.0 - color.a)); cloud_blend = 1; } else { cloud_blend = 1; } } else { #else { #endif cloud_blend = 1; //dist = DIST_CAP; } } /* color.rgb = vec3(sin(depth_at(uv) * 3.14159 * 2) * 0.5 + 0.5); */ color.rgb = mix(color.rgb, get_cloud_color(color.rgb, dir, cam_pos.xyz, time_of_day.x, dist, 1.0), cloud_blend); #if (CLOUD_MODE == CLOUD_MODE_NONE) color.rgb = apply_point_glow(cam_pos.xyz + focus_off.xyz, dir, dist, color.rgb); #else if (medium.x == MEDIUM_AIR && rain_density > 0.001) { vec3 cam_wpos = cam_pos.xyz + focus_off.xyz; vec3 adjusted_dir = (vec4(dir, 0) * rain_dir_mat).xyz; vec2 dir2d = adjusted_dir.xy; vec3 rorigin = cam_pos.xyz + focus_off.xyz + 0.5; vec3 rpos = vec3(0.0); float t = 0.0; const float PLANCK = 0.01; for (int i = 0; i < 14 /* log2(64) * 2 + 2 */; i ++) { float scale = min(pow(2, ceil(t / 2.0)), 32); vec2 deltas = (step(vec2(0), dir2d) - fract(rpos.xy / scale + 100.0)) / dir2d; float jump = max(min(deltas.x, deltas.y) * scale, PLANCK); t += jump; #if (CLOUD_MODE >= CLOUD_MODE_MEDIUM) if (t >= 64.0) { break; } #else if (t >= 16.0) { break; } #endif rpos = rorigin + adjusted_dir * t; vec2 diff = abs(round(rpos.xy) - rpos.xy); vec3 wall_pos = vec3((diff.x > diff.y) ? rpos.xy : rpos.yx, rpos.z + integrated_rain_vel); wall_pos.xz *= vec2(4, 0.3); wall_pos.z += hash_two(uvec2(wall_pos.xy + vec2(0, 0.5))); float depth_adjust = fract(hash_two(uvec2(wall_pos.xz) + 500u)); float wpos_dist = t - jump * depth_adjust; vec3 wpos = cam_pos.xyz + dir * wpos_dist; if (wpos_dist > dist) { break; } if (length((fract(wall_pos.xz) - 0.5)) < 0.1 + pow(max(0.0, wpos_dist - (dist - 0.25)) / 0.25, 4.0) * 0.2) { float density = rain_density * rain_occlusion_at(wpos); if (fract(hash_two(uvec2(wall_pos.xz) + 1000u)) >= density) { continue; } float alpha = 0.5 * clamp((wpos_dist - 1.0) * 0.5, 0.0, 1.0); float light = dot(color.rgb, vec3(1)) + 0.05 + (get_sun_brightness() + get_moon_brightness()) * 0.2; color.rgb = mix(color.rgb, vec3(0.3, 0.35, 0.5) * light, alpha); } } } #endif tgt_color = vec4(color.rgb, 1); }