#ifndef LOD_GLSL #define LOD_GLSL #include #include #include layout(set = 0, binding = 7) uniform texture2D t_horizon; layout(set = 0, binding = 8) uniform sampler s_horizon; const float MIN_SHADOW = 0.33; vec2 pos_to_tex(vec2 pos) { // Want: (pixel + 0.5) vec2 uv_pos = (focus_off.xy + pos + 16) / 32.0; return vec2(uv_pos.x, uv_pos.y); } // textureBicubic from https://stackoverflow.com/a/42179924 vec4 cubic(float v) { vec4 n = vec4(1.0, 2.0, 3.0, 4.0) - v; vec4 s = n * n * n; float x = s.x; float y = s.y - 4.0 * s.x; float z = s.z - 4.0 * s.y + 6.0 * s.x; float w = 6.0 - x - y - z; return vec4(x, y, z, w) * (1.0/6.0); } // Computes atan(y, x), except with more stability when x is near 0. float atan2(in float y, in float x) { bool s = (abs(x) > abs(y)); return mix(PI/2.0 - atan(x,y), atan(y,x), s); } // NOTE: We assume the sampled coordinates are already in "texture pixels". vec4 textureBicubic(texture2D tex, sampler sampl, vec2 texCoords) { // TODO: remove all textureSize calls and replace with constants vec2 texSize = textureSize(sampler2D(tex, sampl), 0); vec2 invTexSize = 1.0 / texSize; /* texCoords.y = texSize.y - texCoords.y; */ texCoords = texCoords/* * texSize */ - 0.5; vec2 fxy = fract(texCoords); texCoords -= fxy; vec4 xcubic = cubic(fxy.x); vec4 ycubic = cubic(fxy.y); vec4 c = texCoords.xxyy + vec2 (-0.5, +1.5).xyxy; // vec4 c = texCoords.xxyy + vec2 (-1, +1).xyxy; vec4 s = vec4(xcubic.xz + xcubic.yw, ycubic.xz + ycubic.yw); vec4 offset = c + vec4 (xcubic.yw, ycubic.yw) / s; offset *= invTexSize.xxyy; /* // Correct for map rotaton. offset.zw = 1.0 - offset.zw; */ vec4 sample0 = texture(sampler2D(tex, sampl), offset.xz); vec4 sample1 = texture(sampler2D(tex, sampl), offset.yz); vec4 sample2 = texture(sampler2D(tex, sampl), offset.xw); vec4 sample3 = texture(sampler2D(tex, sampl), offset.yw); // vec4 sample0 = texelFetch(sampler, offset.xz, 0); // vec4 sample1 = texelFetch(sampler, offset.yz, 0); // vec4 sample2 = texelFetch(sampler, offset.xw, 0); // vec4 sample3 = texelFetch(sampler, offset.yw, 0); float sx = s.x / (s.x + s.y); float sy = s.z / (s.z + s.w); return mix( mix(sample3, sample2, sx), mix(sample1, sample0, sx) , sy); } vec4 textureMaybeBicubic(texture2D tex, sampler sampl, vec2 texCoords) { #if (CLOUD_MODE >= CLOUD_MODE_HIGH) return textureBicubic(tex, sampl, texCoords); #else vec2 offset = (texCoords + vec2(-1.0, 0.5)) / textureSize(sampler2D(tex, sampl), 0); return texture(sampler2D(tex, sampl), offset); #endif } // 16 bit version (each of the 2 8-bit components are combined after bilinear sampling) // NOTE: We assume the sampled coordinates are already in "texture pixels". vec2 textureBicubic16(texture2D tex, sampler sampl, vec2 texCoords) { vec2 texSize = textureSize(sampler2D(tex, sampl), 0); vec2 invTexSize = 1.0 / texSize; /* texCoords.y = texSize.y - texCoords.y; */ texCoords = texCoords/* * texSize */ - 0.5; vec2 fxy = fract(texCoords); texCoords -= fxy; vec4 xcubic = cubic(fxy.x); vec4 ycubic = cubic(fxy.y); vec4 c = texCoords.xxyy + vec2 (-0.5, +1.5).xyxy; // vec4 c = texCoords.xxyy + vec2 (-1, +1).xyxy; vec4 s = vec4(xcubic.xz + xcubic.yw, ycubic.xz + ycubic.yw); vec4 offset = c + vec4 (xcubic.yw, ycubic.yw) / s; offset *= invTexSize.xxyy; /* // Correct for map rotaton. offset.zw = 1.0 - offset.zw; */ vec4 sample0_v4 = textureLod(sampler2D(tex, sampl), offset.xz, 0); vec4 sample1_v4 = textureLod(sampler2D(tex, sampl), offset.yz, 0); vec4 sample2_v4 = textureLod(sampler2D(tex, sampl), offset.xw, 0); vec4 sample3_v4 = textureLod(sampler2D(tex, sampl), offset.yw, 0); vec2 sample0 = sample0_v4.rb / 256.0 + sample0_v4.ga; vec2 sample1 = sample1_v4.rb / 256.0 + sample1_v4.ga; vec2 sample2 = sample2_v4.rb / 256.0 + sample2_v4.ga; vec2 sample3 = sample3_v4.rb / 256.0 + sample3_v4.ga; // vec4 sample0 = texelFetch(sampler, offset.xz, 0); // vec4 sample1 = texelFetch(sampler, offset.yz, 0); // vec4 sample2 = texelFetch(sampler, offset.xw, 0); // vec4 sample3 = texelFetch(sampler, offset.yw, 0); float sx = s.x / (s.x + s.y); float sy = s.z / (s.z + s.w); return mix( mix(sample3, sample2, sx), mix(sample1, sample0, sx) , sy); } // Gets the altitude at a position relative to focus_off. float alt_at(vec2 pos) { vec4 alt_sample = textureLod/*textureBicubic16*/(sampler2D(t_alt, s_alt), wpos_to_uv(focus_off.xy + pos), 0); return (/*round*/((alt_sample.r / 256.0 + alt_sample.g) * (/*1300.0*//*1278.7266845703125*/view_distance.w)) + /*140.0*/view_distance.z - focus_off.z); //+ (texture(t_noise, pos * 0.002).x - 0.5) * 64.0; // return 0.0 // + pow(texture(t_noise, pos * 0.00005).x * 1.4, 3.0) * 1000.0 // + texture(t_noise, pos * 0.001).x * 100.0 // + texture(t_noise, pos * 0.003).x * 30.0; } float alt_at_real(vec2 pos) { // Basic idea: only really need the real altitude for an accurate water height estimation, so if we are in the cheap shader take a shortcut. // #if (FLUID_MODE == FLUID_MODE_LOW) // return alt_at(pos); // #elif (FLUID_MODE == FLUID_MODE_SHINY) return (/*round*/(textureBicubic16(t_alt, s_alt, pos_to_tex(pos)).r * (/*1300.0*//*1278.7266845703125*/view_distance.w)) + /*140.0*/view_distance.z - focus_off.z); // #endif //+ (texture(t_noise, pos * 0.002).x - 0.5) * 64.0; // return 0.0 // + pow(texture(t_noise, pos * 0.00005).x * 1.4, 3.0) * 1000.0 // + texture(t_noise, pos * 0.001).x * 100.0 // + texture(t_noise, pos * 0.003).x * 30.0; } float horizon_at2(vec4 f_horizons, float alt, vec3 pos, vec4 light_dir) { const float PI_2 = 3.1415926535897932384626433832795 / 2.0; const float MIN_LIGHT = 0.0;//0.115/*0.0*/; // return 1.0; /* let shade_frac = horizon_map .and_then(|(angles, heights)| { chunk_idx .and_then(|chunk_idx| angles.get(chunk_idx)) .map(|&e| (e as f64, heights)) }) .and_then(|(e, heights)| { chunk_idx .and_then(|chunk_idx| heights.get(chunk_idx)) .map(|&f| (e, f as f64)) }) .map(|(angle, height)| { let w = 0.1; if angle != 0.0 && light_direction.x != 0.0 { let deltax = height / angle; let lighty = (light_direction.y / light_direction.x * deltax).abs(); let deltay = lighty - height; let s = (deltay / deltax / w).min(1.0).max(0.0); // Smoothstep s * s * (3.0 - 2.0 * s) } else { 1.0 } }) .unwrap_or(1.0); */ // vec2 f_horizon; /* if (light_dir.z >= 0) { return 0.0; } */ /* if (light_dir.x >= 0) { f_horizon = f_horizons.rg; // f_horizon = f_horizons.ba; } else { f_horizon = f_horizons.ba; // f_horizon = f_horizons.rg; } return 1.0; */ /* bvec2 f_mode = lessThan(vec2(light_dir.x), vec2(1.0)); f_horizon = mix(f_horizons.ba, f_horizons.rg, f_mode); */ // f_horizon = mix(f_horizons.rg, f_horizons.ba, clamp(light_dir.x * 10000.0, 0.0, 1.0)); vec2 f_horizon = mix(f_horizons.rg, f_horizons.ba, bvec2(light_dir.x < 0.0)); // vec2 f_horizon = mix(f_horizons.ba, f_horizons.rg, clamp(light_dir.x * 10000.0, 0.0, 1.0)); // f_horizon = mix(f_horizons.ba, f_horizons.rg, bvec2(lessThan(light_dir.xx, vec2(0.0)))); /* if (f_horizon.x <= 0) { return 1.0; } */ float angle = tan(f_horizon.x * PI_2); /* if (angle <= 0.0001) { return 1.0; } */ float height = f_horizon.y * /*1300.0*//*1278.7266845703125*/view_distance.w + view_distance.z; const float w = 0.1; float deltah = height - alt - focus_off.z; //if (deltah < 0.0001/* || angle < 0.0001 || abs(light_dir.x) < 0.0001*/) { // return 1.0; /*} else */{ float lighta = /*max*/(-light_dir.z/*, 0.0*/) / max(abs(light_dir.x), 0.0001); // NOTE: Ideally, deltah <= 0.0 is a sign we have an oblique horizon angle. float deltax = deltah / max(angle, 0.0001)/*angle*/; float lighty = lighta * deltax; float deltay = lighty - deltah + max(pos.z - alt, 0.0); // NOTE: the "real" deltah should always be >= 0, so we know we're only handling the 0 case with max. float s = mix(max(min(max(deltay, 0.0) / max(deltax, 0.0001) / w, 1.0), 0.0), 1.0, deltah <= 0); return max(/*0.2 + 0.8 * */(s * s * (3.0 - 2.0 * s)), MIN_LIGHT); /* if (lighta >= angle) { return 1.0; } else { return MIN_LIGHT; } */ // float deltah = height - alt; // float deltah = max(height - alt, 0.0); // float lighty = abs(sun_dir.z / sun_dir.x * deltax); // float lighty = abs(sun_dir.z / sun_dir.x * deltax); // float deltay = lighty - /*pos.z*//*deltah*/(deltah + max(pos.z - alt, 0.0))/*deltah*/; // float s = max(min(max(deltay, 0.0) / deltax / w, 1.0), 0.0); // Smoothstep // return max(/*0.2 + 0.8 * */(s * s * (3.0 - 2.0 * s)), MIN_LIGHT); } } // float horizon_at(vec3 pos, /*float time_of_day*/vec3 light_dir) { // vec4 f_horizons = textureMaybeBicubic(t_horizon, pos_to_tex(pos.xy)); // // f_horizons.xyz = /*linear_to_srgb*/(f_horizons.xyz); // float alt = alt_at_real(pos.xy); // return horizon_at2(f_horizons, alt, pos, light_dir); // } vec2 splay(vec2 pos) { // const float SPLAY_MULT = 1048576.0; float len_2 = dot(pos, pos); float len_pow = len_2 * sqrt(len_2); // float len_pow = pow(len/* * SQRT_2*//* * 0.5*/, 3.0); // vec2 splayed = pos * pow(len * 0.5, 3.0) * SPLAY_MULT; const float SQRT_2 = sqrt(2.0) / 2.0; // /const float CBRT_2 = cbrt(2.0) / 2.0; // vec2 splayed = pos * (view_distance.x * SQRT_2 + pow(len * 0.5, 3.0) * (SPLAY_MULT - view_distance.x)); vec2 splayed = pos * (view_distance.x * SQRT_2 + len_pow * (textureSize(sampler2D(t_alt, s_alt), 0) * 32.0/* - view_distance.x*/)); if (abs(pos.x) > 0.99 || abs(pos.y) > 0.99) { splayed *= 10.0; } return splayed; // Radial: pos.x = r - view_distance.x from focus_pos, pos.y = θ from cam_pos to focus_pos on xy plane. // const float PI_2 = 3.1415926535897932384626433832795; // float squared = pos.x * pos.x; // // // vec2 splayed2 = pos * vec2(squared * (SPLAY_MULT - view_distance.x), PI); // vec2 splayed2 = pos * vec2(squared * (textureSize(t_alt, 0).x * 32.0 - view_distance.x), PI); // float r = splayed2.x + view_distance.x; // vec2 theta = vec2(cos(splayed2.y), sin(splayed2.y)); // return r * theta; // // mat2 rot_mat = mat2(vec2(theta.x, -theta.y), theta.yx); // // return r * /*normalize(normalize(focus_pos.xy - cam_pos.xy) + theta);*/rot_mat * normalize(focus_pos.xy - cam_pos.xy); // return splayed; } vec3 lod_norm(vec2 f_pos/*vec3 pos*/, vec4 square) { // const float SAMPLE_W = 32; // vec2 f_pos = pos.xy; // float altx0 = alt_at_real(f_pos + vec2(-1.0, 0) * SAMPLE_W); // float altx1 = alt_at_real(f_pos + vec2(1.0, 0) * SAMPLE_W); // float alty0 = alt_at_real(f_pos + vec2(0, -1.0) * SAMPLE_W); // float alty1 = alt_at_real(f_pos + vec2(0, 1.0) * SAMPLE_W); float altx0 = alt_at(vec2(square.x, f_pos.y)); float altx1 = alt_at(vec2(square.z, f_pos.y)); float alty0 = alt_at(vec2(f_pos.x, square.y)); float alty1 = alt_at(vec2(f_pos.x, square.w)); float slope = abs(altx1 - altx0) + abs(alty0 - alty1); // vec3 norm = normalize(cross( // vec3(/*2.0 * SAMPLE_W*/square.z - square.x, 0.0, altx1 - altx0), // vec3(0.0, /*2.0 * SAMPLE_W*/square.w - square.y, alty1 - alty0) // )); vec3 norm = normalize(vec3( (altx0 - altx1) / (square.z - square.x), (alty0 - alty1) / (square.w - square.y), 1.0 //(abs(square.w - square.y) + abs(square.z - square.x)) / (slope + 0.00001) // Avoid NaN )); /* vec3 norm = normalize(vec3( (altx0 - altx1) / (2.0 * SAMPLE_W), (alty0 - alty1) / (2.0 * SAMPLE_W), (2.0 * SAMPLE_W) / (slope + 0.00001) // Avoid NaN )); */ return faceforward(norm, vec3(0.0, 0.0, -1.0)/*pos - cam_pos.xyz*/, norm); } vec3 lod_norm(vec2 f_pos/*vec3 pos*/) { const float SAMPLE_W = 32; vec3 norm = lod_norm(f_pos, vec4(f_pos - vec2(SAMPLE_W), f_pos + vec2(SAMPLE_W))); #ifdef EXPERIMENTAL_PROCEDURALLODDETAIL vec2 wpos = f_pos + focus_off.xy; norm.xy += vec2( textureLod(sampler2D(t_noise, s_noise), wpos / 250, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 250 + 0.5, 0).x - 0.5 ) * 0.25 / pow(norm.z + 0.1, 3); norm.xy += vec2( textureLod(sampler2D(t_noise, s_noise), wpos / 100, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 100 + 0.5, 0).x - 0.5 ) * 0.25 / pow(norm.z + 0.1, 3); norm = normalize(norm); #endif return norm; } vec3 lod_pos(vec2 pos, vec2 focus_pos) { // Remove spiking by "pushing" vertices towards local optima vec2 delta = splay(pos); vec2 hpos = focus_pos + delta; #ifndef EXPERIMENTAL_BAREMINIMUM vec2 nhpos = hpos; // vec2 lod_shift = splay(abs(pos) - 1.0 / view_distance.y); float shift = 15.0;// min(lod_shift.x, lod_shift.y) * 0.5; for (int i = 0; i < 3; i ++) { // vec4 square = focus_pos.xy + vec4(splay(pos - vec2(1.0, 1.0), splay(pos + vec2(1.0, 1.0)))); nhpos -= lod_norm(hpos).xy * shift; } hpos = hpos + normalize(nhpos - hpos + 0.001) * min(length(nhpos - hpos), 32); #endif return vec3(hpos, alt_at_real(hpos)); } #ifdef HAS_LOD_FULL_INFO layout(set = 0, binding = 10) uniform texture2D t_map; layout(set = 0, binding = 11) uniform sampler s_map; vec3 lod_col(vec2 pos) { #ifdef EXPERIMENTAL_PROCEDURALLODDETAIL vec2 wpos = pos + focus_off.xy; vec2 shift = vec2( textureLod(sampler2D(t_noise, s_noise), wpos / 200, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 200 + 0.5, 0).x - 0.5 ) * 64 + vec2( textureLod(sampler2D(t_noise, s_noise), wpos / 50, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 50 + 0.5, 0).x - 0.5 ) * 48; pos += shift; wpos += shift; #endif vec3 col = textureBicubic(t_map, s_map, pos_to_tex(pos)).rgb; /* #ifdef EXPERIMENTAL_PROCEDURALLODDETAIL col *= pow(vec3( textureLod(sampler2D(t_noise, s_noise), wpos / 40, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 50 + 0.5, 0).x - 0.5, textureLod(sampler2D(t_noise, s_noise), wpos / 45 + 0.75, 0).x - 0.5 ) + 1.0, vec3(0.5)); #endif */ return col; } #endif vec3 water_diffuse(vec3 color, vec3 dir, float max_dist) { if (medium.x == 1) { float f_alt = alt_at(cam_pos.xy); float fluid_alt = max(cam_pos.z + 1, floor(f_alt + 1)); float water_dist = clamp((fluid_alt - cam_pos.z) / pow(max(dir.z, 0), 2), 0, max_dist); float fade = pow(0.95, water_dist); return mix(vec3(0.0, 0.2, 0.5) * (get_sun_brightness() * get_sun_color() + get_moon_brightness() * get_moon_color()) * pow(0.99, max((fluid_alt - cam_pos.z) * 12.0 - dir.z * 200, 0)), color.rgb * exp(-MU_WATER * water_dist * 0.1), fade); } else { return color; } } #endif