#ifndef SRGB_GLSL #define SRGB_GLSL // Linear RGB, attenuation coefficients for water at roughly R, G, B wavelengths. // See https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water const vec3 MU_WATER = vec3(0.6, 0.04, 0.01); // // NOTE: Automatic in v4.0 // float // mip_map_level(in vec2 texture_coordinate) // { // // The OpenGL Graphics System: A Specification 4.2 // // - chapter 3.9.11, equation 3.21 // // // vec2 dx_vtc = dFdx(texture_coordinate); // vec2 dy_vtc = dFdy(texture_coordinate); // float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc)); // // // //return max(0.0, 0.5 * log2(delta_max_sqr) - 1.0); // == log2(sqrt(delta_max_sqr)); // return 0.5 * log2(delta_max_sqr); // == log2(sqrt(delta_max_sqr)); // } //https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl vec3 srgb_to_linear(vec3 srgb) { bvec3 cutoff = lessThan(srgb, vec3(0.04045)); vec3 higher = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4)); vec3 lower = srgb/vec3(12.92); return mix(higher, lower, cutoff); } vec3 linear_to_srgb(vec3 col) { // bvec3 cutoff = lessThan(col, vec3(0.0060)); // return mix(11.500726 * col, , cutoff); vec3 s1 = vec3(sqrt(col.r), sqrt(col.g), sqrt(col.b)); vec3 s2 = vec3(sqrt(s1.r), sqrt(s1.g), sqrt(s1.b)); vec3 s3 = vec3(sqrt(s2.r), sqrt(s2.g), sqrt(s2.b)); return vec3( mix(11.500726 * col.r, (0.585122381 * s1.r + 0.783140355 * s2.r - 0.368262736 * s3.r), clamp((col.r - 0.0060) * 10000.0, 0.0, 1.0)), mix(11.500726 * col.g, (0.585122381 * s1.g + 0.783140355 * s2.g - 0.368262736 * s3.g), clamp((col.g - 0.0060) * 10000.0, 0.0, 1.0)), mix(11.500726 * col.b, (0.585122381 * s1.b + 0.783140355 * s2.b - 0.368262736 * s3.b), clamp((col.b - 0.0060) * 10000.0, 0.0, 1.0)) ); } float pow5(float x) { float x2 = x * x; return x2 * x2 * x; } vec4 pow5(vec4 x) { vec4 x2 = x * x; return x2 * x2 * x; } // Fresnel angle for perfectly specular dialectric materials. // Schlick approximation vec3 schlick_fresnel(vec3 Rs, float cosTheta) { // auto pow5 = [](Float v) { return (v * v) * (v * v) * v; }; // return Rs + pow5(1 - cosTheta) * (Spectrum(1.) - Rs); return Rs + pow5(1.0 - cosTheta) * (1.0 - Rs); } // Beckmann Distribution float BeckmannDistribution_D(float NdotH, float alpha) { const float PI = 3.1415926535897932384626433832795; float NdotH2 = NdotH * NdotH; float NdotH2m2 = NdotH2 * alpha * alpha; float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); return mix(k_spec, 0.0, NdotH == 0.0); } // Voxel Distribution float BeckmannDistribution_D_Voxel(vec3 wh, vec3 voxel_norm, float alpha) { vec3 sides = sign(voxel_norm); // vec3 cos_sides_i = /*sides * */sides * norm; // vec3 cos_sides_o = max(sides * view_dir, 0.0); vec3 NdotH = wh * sides;//max(wh * sides, 0.0);/*cos_sides_i*///max(sides * wh, 0.0); const float PI = 3.1415926535897932384626433832795; vec3 NdotH2 = NdotH * NdotH; vec3 NdotH2m2 = NdotH2 * alpha * alpha; vec3 k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); return dot(mix(k_spec, /*cos_sides_o*/vec3(0.0), equal(NdotH, vec3(0.0))), /*cos_sides_i*/abs(voxel_norm)); // // const float PI = 3.1415926535897932384626433832795; // const vec3 normals[6] = vec3[](vec3(1,0,0), vec3(0,1,0), vec3(0,0,1), vec3(-1,0,0), vec3(0,-1,0), vec3(0,0,-1)); // float voxel_norm = 0.0; // for (int i = 0; i < 6; i ++) { // // Light reflecting off the half-angle can shine on up to three sides. // // So, the idea here is to figure out the ratio of visibility of each of these // // three sides such that their sum adds to 1, then computing a Beckmann Distribution for each side times // // the this ratio. // // // // The ratio of these normals in each direction should be the sum of their cosines with the light over π, // // I think. // // // // cos (wh, theta) // // // // - one normal // // // // The ratio of each of the three exposed sides should just be the slope. // vec3 side = normals[i]; // float side_share = max(dot(norm, side), 0.0); // float NdotH = max(dot(wh, side), 0.0); // voxel_norm += side_share * BeckmannDistribution_D(NdotH, alpha); // // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0); // // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0); // } // /* float NdotH = dot(wh, norm); // float NdotH2 = NdotH * NdotH; // float NdotH2m2 = NdotH2 * alpha * alpha; // float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); // return mix(k_spec, 0.0, NdotH == 0.0); */ // return voxel_norm; } float TrowbridgeReitzDistribution_D_Voxel(vec3 wh, vec3 voxel_norm, float alpha) { vec3 sides = sign(voxel_norm); // vec3 cos_sides_i = /*sides * */sides * norm; // vec3 cos_sides_o = max(sides * view_dir, 0.0); vec3 NdotH = wh * sides;//max(wh * sides, 0.0);/*cos_sides_i*///max(sides * wh, 0.0); const float PI = 3.1415926535897932384626433832795; vec3 NdotH2 = NdotH * NdotH; // vec3 m2 = alpha * alpha; // vec3 NdotH2m2 = NdotH2 * m2; vec3 NdotH2m2 = NdotH2 * alpha * alpha; // vec3 Tan2Theta = (1 - NdotH2) / NdotH2; // vec3 e = (NdotH2 / m2 + (1 - NdotH2) / m2) * Tan2Theta; // vec3 e = 1 / m2 * (1 - NdotH2) / NdotH2; vec3 e = (1 - NdotH2) / NdotH2m2; vec3 k_spec = 1.0 / (PI * NdotH2m2 * NdotH2 * (1 + e) * (1 + e)); // vec3 k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); return dot(mix(k_spec, /*cos_sides_o*/vec3(0.0), equal(NdotH, vec3(0.0))), /*cos_sides_i*/abs(voxel_norm)); } float BeckmannDistribution_Lambda(vec3 norm, vec3 dir, float alpha) { float CosTheta = /*max(dot(norm, dir), 0.0);*/dot(norm, dir); /* if (CosTheta == 0.0) { return 0.0; } float SinTheta = sqrt(1.0 - CosTheta * CosTheta); float TanTheta = SinTheta / CosTheta; float absTanTheta = abs(TanTheta); */ // vec3 w = normalize(dir - dot(dir, norm) * (norm)); // float CosTheta = w.z; float SinTheta = sqrt(1.0 - CosTheta * CosTheta); float TanTheta = SinTheta / CosTheta; float absTanTheta = abs(TanTheta); /* if (isinf(absTanTheta)) { return 0.0; } */ /* float CosPhi = mix(clamp(projDirNorm.x / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0); float SinPhi = mix(clamp(projDirNorm.y / sinTheta, -1.0, 1.0), 0.0, sinTheta == 0.0); float alpha = sqrt(CosPhi * CosPhi * alphax * alphax + SinPhi * SinPhi * alphay * alphay); */ // Float absTanTheta = std::abs(TanTheta(w)); // if (std::isinf(absTanTheta)) return 0.; // <> // Float alpha = std::sqrt(Cos2Phi(w) * alphax * alphax + // Sin2Phi(w) * alphay * alphay); float a = 1.0 / (alpha * absTanTheta); /* if (a >= 1.6) { return 0.0; } return (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a); */ return mix(max(0.0, (1.0 - 1.259 * a + 0.396 * a * a) / (3.535 * a + 2.181 * a * a)), 0.0, isinf(absTanTheta) || a >= 1.6); // Float a = 1 / (alpha * absTanTheta); // if (a >= 1.6f) // return 0; // return (1 - 1.259f * a + 0.396f * a * a) / // (3.535f * a + 2.181f * a * a); // return 1 / (1 + Lambda(wo) + Lambda(wi)); } float BeckmannDistribution_G(vec3 norm, vec3 dir, vec3 light_dir, float alpha) { // return 1 / (1 + Lambda(wo) + Lambda(wi)); return 1.0 / (1.0 + BeckmannDistribution_Lambda(norm, dir, alpha) + BeckmannDistribution_Lambda(norm, -light_dir, alpha)); } // Fresnel blending // // http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fragment-MicrofacetDistributionPublicMethods-2 // and // http://www.pbr-book.org/3ed-2018/Reflection_Models/Fresnel_Incidence_Effects.html vec3 FresnelBlend_f(vec3 norm, vec3 dir, vec3 light_dir, vec3 R_d, vec3 R_s, float alpha) { const float PI = 3.1415926535897932384626433832795; alpha = alpha * sqrt(2.0); float cos_wi = /*max(*/dot(-light_dir, norm)/*, 0.0)*/; float cos_wo = /*max(*/dot(dir, norm)/*, 0.0)*/; vec3 diffuse = (28.0 / (23.0 * PI)) * R_d * (1.0 - R_s) * (1.0 - pow5(1.0 - 0.5 * abs(cos_wi))) * (1.0 - pow5(1.0 - 0.5 * abs(cos_wo))); /* Spectrum diffuse = (28.f/(23.f*Pi)) * Rd * (Spectrum(1.f) - Rs) * (1 - pow5(1 - .5f * AbsCosTheta(wi))) * (1 - pow5(1 - .5f * AbsCosTheta(wo))); */ // Vector3f wh = wi + wo; vec3 wh = -light_dir + dir; #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 bool is_blocked = cos_wi == 0.0 || cos_wo == 0.0; #else bool is_blocked = cos_wi <= 0.0 || cos_wo <= 0.0; #endif if (is_blocked) { return vec3(/*diffuse*/0.0); } // if (cos_wo < 0.0) { // return /*vec3(0.0)*/diffuse; // } /* if (cos_wi == 0.0 || cos_wo == 0.0) { return vec3(0.0); } */ /* if (wh.x == 0 && wh.y == 0 && wh.z == 0) { return vec3(0.0); // return Spectrum(0); } */ wh = normalize(wh);//mix(normalize(wh), vec3(0.0), equal(light_dir, dir)); float dot_wi_wh = dot(-light_dir, wh); vec3 specular = BeckmannDistribution_D(dot(wh, norm), alpha) / (4 * abs(dot_wi_wh) * max(abs(cos_wi), abs(cos_wo))) * schlick_fresnel(R_s, dot_wi_wh); // Spectrum specular = distribution->D(wh) / // (4 * AbsDot(wi, wh) * // std::max(AbsCosTheta(wi), AbsCosTheta(wo))) * // SchlickFresnel(Dot(wi, wh)); return mix(/*diffuse*//* + specular*/diffuse + specular, vec3(0.0), bvec3(all(equal(light_dir, dir)))); } // Fresnel blending // // http://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models.html#fragment-MicrofacetDistributionPublicMethods-2 // and // http://www.pbr-book.org/3ed-2018/Reflection_Models/Fresnel_Incidence_Effects.html vec3 FresnelBlend_Voxel_f(vec3 norm, vec3 dir, vec3 light_dir, vec3 R_d, vec3 R_s, float alpha, vec3 voxel_norm, float dist) { const float PI = 3.1415926535897932384626433832795; alpha = alpha * sqrt(2.0); float cos_wi = /*max(*/dot(-light_dir, norm)/*, 0.0)*/; float cos_wo = /*max(*/dot(dir, norm)/*, 0.0)*/; #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 vec4 AbsNdotL = abs(vec4(light_dir, cos_wi)); vec4 AbsNdotV = abs(vec4(dir, cos_wo)); #else vec3 sides = sign(voxel_norm); vec4 AbsNdotL = vec4(max(-light_dir * sides, 0.0), abs(cos_wi)); vec4 AbsNdotV = vec4(max(dir * sides, 0.0), abs(cos_wo)); #endif // float R_r = 1.0 - R_s; // float R_r = 1.0 - schlick_fresnel(R_s, cos_wi); // // Rs + pow5(1.0 - cosTheta) * (1.0 - Rs) // vec4 R_r = 1.0 - (R_s + (1.0 - R_s) * schlick_fresnel(R_s, cos_wi)); // mat4 R_r = 1.0 - (vec4(R_s, 0.0) + vec4(1.0 - R_s, 0.0) * pow5(1.0 - AbsNdotL)); // vec4 AbsNdotL5 = pow5(1.0 - AbsNdotL); // vec4 R_s4 = vec4(R_s, 0.0); // mat4 R_r = // // mat4(1.0 - (R_s.r + (1.0 - R_s.r) * AbsNdotL5), // // 1.0 - (R_s.g + (1.0 - R_s.g) * AbsNdotL5), // // 1.0 - (R_s.b + (1.0 - R_s.b) * AbsNdotL5), // // vec4(0.0) // // ); // mat4(1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.x), // 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.y), // 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.z), // 1.0 - (R_s4 + (1.0 - R_s4) * AbsNdotL5.w) // ); // * ) (R1.0 - R_s.r) 1.0 - (vec4(R_s, 0.0) + vec4(1.0 - R_s, 0.0) * pow5(1.0 - AbsNdotL)); vec4 diffuse_factor = // vec4(abs(vec4(-light_dir * sides, cos_wi))) (1.0 - pow5(1.0 - 0.5 * AbsNdotL)) * // (1.0 - pow5(1.0 - 0.5 * abs(vec4(-light_dir * sides, cos_wi)))) * // (1.0 - pow5(1.0 - 0.5 * abs(vec4(dir * sides, cos_wo)))) (1.0 - pow5(1.0 - 0.5 * AbsNdotV)) // vec4(1.0) ; /* vec4 diffuse_factor = (1.0 - pow5(1.0 - 0.5 * max(vec4(-light_dir * sides, abs(cos_wi)), 0.0))) * (1.0 - pow5(1.0 - 0.5 * max(vec4(dir * sides, abs(cos_wo)), 0.0))); */ vec3 diffuse = (28.0 / (23.0 * PI))/*(1.0 / PI)*/ * R_d * (1.0 - R_s) * //vec3( dot(diffuse_factor, /*R_r * */vec4(abs(norm) * (1.0 - dist), dist)) //) ; vec3 wh = -light_dir + dir; #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 bool is_blocked = cos_wi == 0.0 || cos_wo == 0.0; #else bool is_blocked = cos_wi <= 0.0 || cos_wo <= 0.0; #endif if (is_blocked) { return vec3(/*diffuse*/0.0); } wh = normalize(wh);//mix(normalize(wh), vec3(0.0), equal(light_dir, dir)); float dot_wi_wh = dot(-light_dir, wh); // float distr = TrowbridgeReitzDistribution_D_Voxel(wh, voxel_norm, alpha); float distr = BeckmannDistribution_D_Voxel(wh, voxel_norm, alpha); // float distr = BeckmannDistribution_D(dot(wh, norm), alpha); vec3 specular = distr / (4 * abs(dot_wi_wh) * max(abs(cos_wi), abs(cos_wo))) * schlick_fresnel(R_s, dot_wi_wh); return mix(/*diffuse*//* + specular*/diffuse + specular, vec3(0.0), bvec3(all(equal(light_dir, dir)))); } // Phong reflection. // // Note: norm, dir, light_dir must all be normalizd. vec3 light_reflection_factor2(vec3 norm, vec3 dir, vec3 light_dir, vec3 k_d, vec3 k_s, float alpha) { // TODO: These are supposed to be the differential changes in the point location p, in tangent space. // That is, assuming we can parameterize a 2D surface by some function p : R² → R³, mapping from // points in a plane to 3D points on the surface, we can define // ∂p(u,v)/∂u and ∂p(u,v)/∂v representing the changes in the pont location as we move along these // coordinates. // // Then we can define the normal at a point, n(u,v) = ∂p(u,v)/∂u × ∂p(u,v)/∂v. // // Additionally, we can define the change in *normals* at each point using the // Weingarten equations (see http://www.pbr-book.org/3ed-2018/Shapes/Spheres.html): // // ∂n/∂u = (fF - eG) / (EG - F²) ∂p/∂u + (eF - fE) / (EG - F²) ∂p/∂v // ∂n/∂v = (gF - fG) / (EG - F²) ∂p/∂u + (fF - gE) / (EG - F²) ∂p/∂v // // where // // E = |∂p/∂u ⋅ ∂p/∂u| // F = ∂p/∂u ⋅ ∂p/∂u // G = |∂p/∂v ⋅ ∂p/∂v| // // and // // e = n ⋅ ∂²p/∂u² // f = n ⋅ ∂²p/(∂u∂v) // g = n ⋅ ∂²p/∂v² // // For planes (see http://www.pbr-book.org/3ed-2018/Shapes/Triangle_Meshes.html) we have // e = f = g = 0 (since the plane has no curvature of any sort) so we get: // // ∂n/∂u = (0, 0, 0) // ∂n/∂v = (0, 0, 0) // // To find ∂p/∂u and ∂p/∂v, we first write p and u parametrically: // p(u, v) = p0 + u ∂p/∂u + v ∂p/∂v // // ( u₀ - u₂ v₀ - v₂ // u₁ - u₂ v₁ - v₂ ) // // Basis: plane norm = norm = (0, 0, 1), x vector = any orthgonal vector on the plane. // vec3 w_i = // vec3 w_i = vec3(view_mat * vec4(-light_dir, 1.0)); // vec3 w_o = vec3(view_mat * vec4(light_dir, 1.0)); float g = 1.0;// BeckmannDistribution_G(norm, dir, light_dir, alpha); return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s * g, alpha); // const float PI = 3.141592; // alpha = alpha * sqrt(2.0); // float ndotL = /*max*/(dot(norm, -light_dir)/*, 0.0*/); // //if (ndotL > 0.0/* && dot(s_norm, -light_dir) > 0.0*/) { // vec3 H = normalize(-light_dir + dir); // float NdotH = dot(norm, H); // float NdotH2 = NdotH * NdotH; // float NdotH2m2 = NdotH2 * alpha * alpha; // float k_spec = exp((NdotH2 - 1) / NdotH2m2) / (PI * NdotH2m2 * NdotH2); // return mix(k_s * k_spec, vec3(0.0), bvec3(ndotL <= 0.0 || NdotH == 0.0)); // // // // (k_d * (L ⋅ N) + k_s * (R ⋅ V)^α) // // return k_d * ndotL + mix(k_s * pow(max(dot(norm, H), 0.0), alpha * 4.0), vec3(0.0), bvec3(ndotL == 0.0)); // // } // // return vec3(0.0); } vec3 light_reflection_factor(vec3 norm, vec3 dir, vec3 light_dir, vec3 k_d, vec3 k_s, float alpha, vec3 voxel_norm, float voxel_lighting) { #if (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_LAMBERTIAN) const float PI = 3.141592; #if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL) #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 vec4 AbsNdotL = abs(vec4(light_dir, dot(norm, light_dir))); #else vec3 sides = sign(voxel_norm); vec4 AbsNdotL = max(vec4(-light_dir * sides, dot(norm, -light_dir)), 0.0); #endif float diffuse = dot(AbsNdotL, vec4(abs(voxel_norm) * (1.0 - voxel_lighting), voxel_lighting)); #elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET) #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 float diffuse = abs(dot(norm, light_dir)); #else float diffuse = max(dot(norm, -light_dir), 0.0); #endif #endif return k_d / PI * diffuse; #elif (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_BLINN_PHONG) const float PI = 3.141592; alpha = alpha * sqrt(2.0); #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 float ndotL = abs(dot(norm, light_dir)); #else float ndotL = max(dot(norm, -light_dir), 0.0); #endif if (ndotL > 0.0) { #if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL) #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 vec4 AbsNdotL = abs(vec4(light_dir, ndotL)); #else vec3 sides = sign(voxel_norm); vec4 AbsNdotL = max(vec4(-light_dir * sides, ndotL), 0.0); #endif float diffuse = dot(AbsNdotL, vec4(abs(voxel_norm) * (1.0 - voxel_lighting), voxel_lighting)); #elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET) float diffuse = ndotL; #endif vec3 H = normalize(-light_dir + dir); #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 float NdotH = abs(dot(norm, H)); #else float NdotH = max(dot(norm, H), 0.0); #endif return (1.0 - k_s) / PI * k_d * diffuse + k_s * pow(NdotH, alpha/* * 4.0*/); } return vec3(0.0); #elif (LIGHTING_ALGORITHM == LIGHTING_ALGORITHM_ASHIKHMIN) #if (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_VOXEL) return FresnelBlend_Voxel_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha, voxel_norm, voxel_lighting); #elif (LIGHTING_DISTRIBUTION_SCHEME == LIGHTING_DISTRIBUTION_SCHEME_MICROFACET) //if (voxel_lighting < 1.0) { return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha); //} else { // return FresnelBlend_f(norm, dir, light_dir, k_d/* * max(dot(norm, -light_dir), 0.0)*/, k_s, alpha); //} #endif #endif } float rel_luminance(vec3 rgb) { // https://en.wikipedia.org/wiki/Relative_luminance const vec3 W = vec3(0.2126, 0.7152, 0.0722); return dot(rgb, W); } // From https://discourse.vvvv.org/t/infinite-ray-intersects-with-infinite-plane/10537 // out of laziness. bool IntersectRayPlane(vec3 rayOrigin, vec3 rayDirection, vec3 posOnPlane, vec3 planeNormal, inout vec3 intersectionPoint) { float rDotn = dot(rayDirection, planeNormal); //parallel to plane or pointing away from plane? if (rDotn < 0.0000001 ) return false; float s = dot(planeNormal, (posOnPlane - rayOrigin)) / rDotn; intersectionPoint = rayOrigin + s * rayDirection; return true; } // Compute uniform attenuation due to beam passing through a substance that fills an area below a horizontal plane // (e.g. in most cases, water below the water surface depth) using the simplest form of the Beer-Lambert law // (https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law): // // I(z) = I₀ e^(-μz) // // We compute this value, except for the initial intensity which may be multiplied out later. // // wpos is the position of the point being hit. // ray_dir is the reversed direction of the ray (going "out" of the point being hit). // mu is the attenuation coefficient for R, G, and B wavelenghts. // surface_alt is the estimated altitude of the horizontal surface separating the substance from air. // defaultpos is the position to use in computing the distance along material at this point if there was a failure. // // Ideally, defaultpos is set so we can avoid branching on error. vec3 compute_attenuation(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) { #if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE) return vec3(1.0); #elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE) #if (LIGHTING_TYPE & LIGHTING_TYPE_TRANSMISSION) != 0 return vec3(1.0); #else // return vec3(1.0); /*if (mu == vec3(0.0)) { return vec3(1.0); }*//* else { return vec3(0.0); }*/ // return vec3(0.0); // vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(surface_alt - wpos.z)); ray_dir = faceforward(ray_dir, vec3(0.0, 0.0, -1.0), ray_dir); vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0); // vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0)); bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos); float depth = length(defaultpos - wpos); return exp(-mu * depth); #endif #endif } // vec3 compute_attenuation2(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) { // #if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE) // return vec3(1.0); // #elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE) // // return vec3(1.0); // /*if (mu == vec3(0.0)) { // return vec3(1.0); // }*//* else { // return vec3(0.0); // }*/ // // return vec3(0.0); // // vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(surface_alt - wpos.z)); // vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); // // vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0)); // bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos); // float depth = length(defaultpos - wpos); // return exp(-mu * depth); // #endif // } // Same as compute_attenuation but since both point are known, set a maximum to make sure we don't exceed the length // from the default point. vec3 compute_attenuation_point(vec3 wpos, vec3 ray_dir, vec3 mu, float surface_alt, vec3 defaultpos) { #if (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_IMPORTANCE) return vec3(1.0); #elif (LIGHTING_TRANSPORT_MODE == LIGHTING_TRANSPORT_MODE_RADIANCE) // return vec3(1.0); /*if (mu == vec3(0.0)) { return vec3(1.0); }*//* else { return vec3(0.0); }*/ // return vec3(0.0); vec3 surface_dir = /*surface_alt < wpos.z ? vec3(0.0, 0.0, -1.0) : vec3(0.0, 0.0, 1.0)*/vec3(0.0, 0.0, sign(wpos.z - surface_alt)); // vec3 surface_dir = surface_alt < wpos.z ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); // vec3 surface_dir = faceforward(vec3(0.0, 0.0, 1.0), ray_dir, vec3(0.0, 0.0, 1.0)); float max_length = dot(defaultpos - wpos, defaultpos - wpos); bool _intersects_surface = IntersectRayPlane(wpos, ray_dir, vec3(0.0, 0.0, surface_alt), surface_dir, defaultpos); float depth2 = min(max_length, dot(defaultpos - wpos, defaultpos - wpos)); return exp(-mu * sqrt(depth2)); #endif } //#ifdef HAS_SHADOW_MAPS // #if (SHADOW_MODE == SHADOW_MODE_MAP) //uniform sampler2DShadow t_directed_shadow_maps; //// uniform sampler2DArrayShadow t_directed_shadow_maps; // //float ShadowCalculationDirected(in vec4 /*light_pos[2]*/sun_pos, uint lightIndex) //{ // float bias = 0.0;//-0.0001;// 0.05 / (2.0 * view_distance.x); // // const vec3 sampleOffsetDirections[20] = vec3[] // // ( // // vec3( 1, 1, 1), vec3( 1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1), // // vec3( 1, 1, -1), vec3( 1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1), // // vec3( 1, 1, 0), vec3( 1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0), // // vec3( 1, 0, 1), vec3(-1, 0, 1), vec3( 1, 0, -1), vec3(-1, 0, -1), // // vec3( 0, 1, 1), vec3( 0, -1, 1), vec3( 0, -1, -1), vec3( 0, 1, -1) // // // vec3(0, 0, 0) // // ); // /* if (lightIndex >= light_shadow_count.z) { // return 1.0; // } */ // // vec3 fragPos = sun_pos.xyz;// / sun_pos.w;//light_pos[lightIndex].xyz; // float visibility = textureProj(t_directed_shadow_maps, sun_pos); // // float visibility = textureProj(t_directed_shadow_maps, vec4(fragPos.xy, /*lightIndex, */fragPos.z + bias, sun_pos.w)); // return visibility; // // return mix(visibility, 0.0, sun_pos.z < -1.0); // // return mix(mix(0.0, 1.0, visibility == 1.0), 1.0, sign(sun_pos.w) * sun_pos.z > /*1.0*/abs(sun_pos.w)); // // return visibility == 1.0 ? 1.0 : 0.0; // /* if (visibility == 1.0) { // return 1.0; // } */ // // return visibility; // /* if (fragPos.z > 1.0) { // return 1.0; // } */ // // if (visibility <= 0.75) { // // return 0.0; // // } // // int samples = 20; // // float shadow = 0.0; // // // float bias = 0.0001; // // float viewDistance = length(cam_pos.xyz - fragPos); // // // float diskRadius = 0.2 * (1.0 + (viewDistance / screen_res.w)) / 25.0; // // float diskRadius = 0.0008;//0.005;// / (2.0 * view_distance.x);//(1.0 + (viewDistance / screen_res.w)) / 25.0; // // for(int i = 0; i < samples; ++i) // // { // // vec3 currentDepth = fragPos + vec3(sampleOffsetDirections[i].xyz) * diskRadius + bias; // // visibility = texture(t_directed_shadow_maps, vec4(currentDepth.xy, lightIndex, currentDepth.z)/*, -2.5*/); // // shadow += mix(visibility, 1.0, visibility >= 0.5); // // } // // shadow /= float(samples); // // return shadow; //} // #elif (SHADOW_MODE == SHADOW_MODE_NONE || SHADOW_MODE == SHADOW_MODE_CHEAP) //float ShadowCalculationDirected(in vec4 light_pos[2], uint lightIndex) //{ // return 1.0; //} // #endif //#else //float ShadowCalculationDirected(in vec4 light_pos[2], uint lightIndex) //{ // return 1.0; //} //#endif vec3 greedy_extract_col_light_attr(texture2D t_col_light, sampler s_col_light, vec2 f_uv_pos, out float f_light, out float f_glow, out uint f_attr) { uvec4 f_col_light = uvec4(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos), 0) * 255); vec3 f_col = vec3( float(((f_col_light.r & 0x7u) << 1u) | (f_col_light.b & 0xF0u)), float(f_col_light.a), float(((f_col_light.g & 0x7u) << 1u) | ((f_col_light.b & 0x0Fu) << 4u)) ) / 255.0; // TODO: Figure out how to use `texture` and modulation to avoid needing to do manual filtering vec2 light_00 = vec2(uvec2(f_col_light.rg) >> 3u); vec2 light_10 = vec2(uvec2(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(1, 0), 0).rg * 255.0) >> 3u); vec2 light_01 = vec2(uvec2(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(0, 1), 0).rg * 255.0) >> 3u); vec2 light_11 = vec2(uvec2(texelFetch(sampler2D(t_col_light, s_col_light), ivec2(f_uv_pos) + ivec2(1, 1), 0).rg * 255.0) >> 3u); vec2 light_0 = mix(light_00, light_01, fract(f_uv_pos.y)); vec2 light_1 = mix(light_10, light_11, fract(f_uv_pos.y)); vec2 light = mix(light_0, light_1, fract(f_uv_pos.x)); // TODO: Use `texture` instead //vec2 light = texture(t_col_light, f_uv_pos).xy / 31; f_light = light.x / 31.0; f_glow = light.y / 31.0; f_attr = f_col_light.g >> 3u; return srgb_to_linear(f_col); } vec3 greedy_extract_col_light_glow(texture2D t_col_light, sampler s_col_light, vec2 f_uv_pos, out float f_light, out float f_glow) { uint f_attr; return greedy_extract_col_light_attr(t_col_light, s_col_light, f_uv_pos, f_light, f_glow, f_attr); } #endif