use common::{ comp::{ BeamSegment, CharacterState, Collider, Gravity, Mass, Mounting, Ori, PhysicsState, Pos, PreviousVelDtCache, Projectile, Scale, Shockwave, Sticky, Vel, }, consts::{FRIC_GROUND, GRAVITY}, event::{EventBus, ServerEvent}, metrics::{PhysicsMetrics, SysMetrics}, resources::DeltaTime, span, terrain::{Block, TerrainGrid}, uid::Uid, vol::ReadVol, }; use rayon::iter::ParallelIterator; use specs::{ Entities, Join, ParJoin, Read, ReadExpect, ReadStorage, System, WriteExpect, WriteStorage, }; use std::ops::Range; use vek::*; pub const BOUYANCY: f32 = 1.0; // Friction values used for linear damping. They are unitless quantities. The // value of these quantities must be between zero and one. They represent the // amount an object will slow down within 1/60th of a second. Eg. if the // friction is 0.01, and the speed is 1.0, then after 1/60th of a second the // speed will be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ // 60. pub const FRIC_AIR: f32 = 0.0125; pub const FRIC_FLUID: f32 = 0.4; // Integrates forces, calculates the new velocity based off of the old velocity // dt = delta time // lv = linear velocity // damp = linear damping // Friction is a type of damping. fn integrate_forces(dt: f32, mut lv: Vec3, grav: f32, damp: f32) -> Vec3 { // this is not linear damping, because it is proportional to the original // velocity this "linear" damping in in fact, quite exponential. and thus // must be interpolated accordingly let linear_damp = (1.0 - damp.min(1.0)).powf(dt * 60.0); // TODO: investigate if we can have air friction provide the neccessary limits // here lv.z = (lv.z - grav * dt).max(-80.0).min(lv.z); lv * linear_damp } /// This system applies forces and calculates new positions and velocities. pub struct Sys; impl<'a> System<'a> for Sys { #[allow(clippy::type_complexity)] type SystemData = ( Entities<'a>, ReadStorage<'a, Uid>, ReadExpect<'a, TerrainGrid>, Read<'a, DeltaTime>, ReadExpect<'a, SysMetrics>, WriteExpect<'a, PhysicsMetrics>, Read<'a, EventBus>, ReadStorage<'a, Scale>, ReadStorage<'a, Sticky>, ReadStorage<'a, Mass>, ReadStorage<'a, Collider>, ReadStorage<'a, Gravity>, WriteStorage<'a, PhysicsState>, WriteStorage<'a, Pos>, WriteStorage<'a, Vel>, WriteStorage<'a, Ori>, WriteStorage<'a, PreviousVelDtCache>, ReadStorage<'a, Mounting>, ReadStorage<'a, Projectile>, ReadStorage<'a, BeamSegment>, ReadStorage<'a, Shockwave>, ReadStorage<'a, CharacterState>, ); #[allow(clippy::or_fun_call)] // TODO: Pending review in #587 #[allow(clippy::blocks_in_if_conditions)] // TODO: Pending review in #587 fn run( &mut self, ( entities, uids, terrain, dt, sys_metrics, mut physics_metrics, event_bus, scales, stickies, masses, colliders, gravities, mut physics_states, mut positions, mut velocities, mut orientations, mut previous_velocities_times_dt, mountings, projectiles, beams, shockwaves, char_states, ): Self::SystemData, ) { let start_time = std::time::Instant::now(); span!(_guard, "run", "phys::Sys::run"); let mut event_emitter = event_bus.emitter(); // Add/reset physics state components span!(guard, "Add/reset physics state components"); for (entity, _, _, _, _) in ( &entities, &colliders, &positions, &velocities, &orientations, ) .join() { let _ = physics_states .entry(entity) .map(|e| e.or_insert_with(Default::default)); } drop(guard); // Apply pushback // // Note: We now do this first because we project velocity ahead. This is slighty // imperfect and implies that we might get edge-cases where entities // standing right next to the edge of a wall may get hit by projectiles // fired into the wall very close to them. However, this sort of thing is // already possible with poorly-defined hitboxes anyway so it's not too // much of a concern. // // If this situation becomes a problem, this code should be integrated with the // terrain collision code below, although that's not trivial to do since // it means the step needs to take into account the speeds of both // entities. span!(guard, "Maintain pushback cache"); //Add PreviousVelDtCache for all relevant entities for entity in ( &entities, &velocities, &positions, !&previous_velocities_times_dt, !&mountings, !&beams, !&shockwaves, ) .join() .map(|(e, _, _, _, _, _, _)| e) .collect::>() { let _ = previous_velocities_times_dt.insert(entity, PreviousVelDtCache(Vec3::zero())); } //Update PreviousVelDtCache for (_, vel, _, mut vel_dt, _, _, _) in ( &entities, &velocities, &positions, &mut previous_velocities_times_dt, !&mountings, !&beams, !&shockwaves, ) .join() { vel_dt.0 = vel.0 * dt.0; } drop(guard); span!(guard, "Apply pushback"); let metrics = ( &entities, &positions, &mut velocities, &previous_velocities_times_dt, scales.maybe(), masses.maybe(), colliders.maybe(), !&mountings, stickies.maybe(), &mut physics_states, // TODO: if we need to avoid collisions for other things consider moving whether it // should interact into the collider component or into a separate component projectiles.maybe(), char_states.maybe(), ) .par_join() .filter(|(_, _, _, _, _, _, _, _, sticky, physics, _, _)| { sticky.is_none() || (physics.on_wall.is_none() && !physics.on_ground) }) .map(|(e, p, v, vd, s, m, c, _, _, ph, pr, c_s)| (e, p, v, vd, s, m, c, ph, pr, c_s)) .fold( PhysicsMetrics::default, |mut metrics, ( entity, pos, vel, vel_dt, scale, mass, collider, physics, projectile, char_state_maybe, )| { let scale = scale.map(|s| s.0).unwrap_or(1.0); let radius = collider.map(|c| c.get_radius()).unwrap_or(0.5); let modifier = if char_state_maybe.map_or(false, |c_s| c_s.is_dodge()) { 0.5 } else { 1.0 }; let z_limits = collider .map(|c| c.get_z_limits(modifier)) .unwrap_or((-0.5 * modifier, 0.5 * modifier)); let mass = mass.map(|m| m.0).unwrap_or(scale); // Resets touch_entities in physics physics.touch_entities.clear(); let is_projectile = projectile.is_some(); let mut vel_delta = Vec3::zero(); for ( entity_other, other, pos_other, vel_dt_other, scale_other, mass_other, collider_other, _, _, _, _, char_state_other_maybe, ) in ( &entities, &uids, &positions, &previous_velocities_times_dt, scales.maybe(), masses.maybe(), colliders.maybe(), !&projectiles, !&mountings, !&beams, !&shockwaves, char_states.maybe(), ) .join() { if entity == entity_other { continue; } let scale_other = scale_other.map(|s| s.0).unwrap_or(1.0); let radius_other = collider_other.map(|c| c.get_radius()).unwrap_or(0.5); let collision_dist = scale * radius + scale_other * radius_other; // Sanity check: skip colliding entities that are too far from each other if (pos.0 - pos_other.0).xy().magnitude() > (vel_dt.0 - vel_dt_other.0).xy().magnitude() + collision_dist { continue; } let modifier_other = if char_state_other_maybe.map_or(false, |c_s| c_s.is_dodge()) { 0.5 } else { 1.0 }; let z_limits_other = collider_other .map(|c| c.get_z_limits(modifier_other)) .unwrap_or((-0.5 * modifier_other, 0.5 * modifier_other)); let mass_other = mass_other.map(|m| m.0).unwrap_or(scale_other); //This check after the pos check, as we currently don't have that many // massless entites [citation needed] if mass_other == 0.0 { continue; } metrics.entity_entity_collision_checks += 1; const MIN_COLLISION_DIST: f32 = 0.3; let increments = ((vel_dt.0 - vel_dt_other.0).magnitude() / MIN_COLLISION_DIST) .max(1.0) .ceil() as usize; let step_delta = 1.0 / increments as f32; let mut collided = false; for i in 0..increments { let factor = i as f32 * step_delta; let pos = pos.0 + vel_dt.0 * factor; let pos_other = pos_other.0 + vel_dt_other.0 * factor; let diff = pos.xy() - pos_other.xy(); if diff.magnitude_squared() <= collision_dist.powi(2) && pos.z + z_limits.1 * scale >= pos_other.z + z_limits_other.0 * scale_other && pos.z + z_limits.0 * scale <= pos_other.z + z_limits_other.1 * scale_other { if !collided { physics.touch_entities.push(*other); metrics.entity_entity_collisions += 1; } // Don't apply repulsive force to projectiles if diff.magnitude_squared() > 0.0 && !is_projectile { let force = 400.0 * (collision_dist - diff.magnitude()) * mass_other / (mass + mass_other); vel_delta += Vec3::from(diff.normalized()) * force * step_delta; } collided = true; } } } // Change velocity vel.0 += vel_delta * dt.0; metrics }, ) .reduce(PhysicsMetrics::default, |old, new| PhysicsMetrics { entity_entity_collision_checks: old.entity_entity_collision_checks + new.entity_entity_collision_checks, entity_entity_collisions: old.entity_entity_collisions + new.entity_entity_collisions, }); physics_metrics.entity_entity_collision_checks = metrics.entity_entity_collision_checks; physics_metrics.entity_entity_collisions = metrics.entity_entity_collisions; drop(guard); // Apply movement inputs span!(guard, "Apply movement and terrain collision"); let land_on_grounds = ( &entities, scales.maybe(), stickies.maybe(), &colliders, &mut positions, &mut velocities, &mut orientations, &mut physics_states, !&mountings, ) .par_join() .fold(Vec::new, | mut land_on_grounds, (entity, _scale, sticky, collider, mut pos, mut vel, _ori, mut physics_state, _), | { if sticky.is_some() && physics_state.on_surface().is_some() { vel.0 = Vec3::zero(); return land_on_grounds; } // TODO: Use this //let scale = scale.map(|s| s.0).unwrap_or(1.0); let old_vel = *vel; // Integrate forces // Friction is assumed to be a constant dependent on location let friction = FRIC_AIR .max(if physics_state.on_ground { FRIC_GROUND } else { 0.0 }) .max(if physics_state.in_liquid.is_some() { FRIC_FLUID } else { 0.0 }); let in_loaded_chunk = terrain .get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32))) .is_some(); let downward_force = if !in_loaded_chunk { 0.0 // No gravity in unloaded chunks } else if physics_state .in_liquid .map(|depth| depth > 0.75) .unwrap_or(false) { (1.0 - BOUYANCY) * GRAVITY } else { GRAVITY } * gravities.get(entity).map(|g| g.0).unwrap_or_default(); vel.0 = integrate_forces(dt.0, vel.0, downward_force, friction); // Don't move if we're not in a loaded chunk let mut pos_delta = if in_loaded_chunk { // this is an approximation that allows most framerates to // behave in a similar manner. let dt_lerp = 0.2; (vel.0 * dt_lerp + old_vel.0 * (1.0 - dt_lerp)) * dt.0 } else { Vec3::zero() }; match *collider { Collider::Box { radius, z_min, z_max, } => { // Scale collider // TODO: Use scale & actual proportions when pathfinding is good enough to manage irregular entity // sizes let radius = radius.min(0.45); // * scale; let z_min = z_min; // * scale; let z_max = z_max.clamped(1.2, 1.95); // * scale; // Probe distances let hdist = radius.ceil() as i32; // Neighbouring blocks iterator let near_iter = (-hdist..hdist + 1) .map(move |i| { (-hdist..hdist + 1).map(move |j| { (1 - Block::MAX_HEIGHT.ceil() as i32 + z_min.floor() as i32 ..z_max.ceil() as i32 + 1) .map(move |k| (i, j, k)) }) }) .flatten() .flatten(); // Function for iterating over the blocks the player at a specific position // collides with fn collision_iter<'a>( pos: Vec3, terrain: &'a TerrainGrid, hit: &'a impl Fn(&Block) -> bool, height: &'a impl Fn(&Block) -> f32, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> impl Iterator> + 'a { near_iter.filter_map(move |(i, j, k)| { let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k); if let Some(block) = terrain.get(block_pos).ok().copied().filter(hit) { let player_aabb = Aabb { min: pos + Vec3::new(-radius, -radius, z_range.start), max: pos + Vec3::new(radius, radius, z_range.end), }; let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, height(&block)), }; if player_aabb.collides_with_aabb(block_aabb) { return Some(block_aabb); } } None }) } let z_range = z_min..z_max; // Function for determining whether the player at a specific position collides // with blocks with the given criteria fn collision_with<'a>( pos: Vec3, terrain: &'a TerrainGrid, hit: impl Fn(&Block) -> bool, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> bool { collision_iter(pos, terrain, &|block| block.is_solid() && hit(block), &Block::solid_height, near_iter, radius, z_range).count() > 0 } let was_on_ground = physics_state.on_ground; physics_state.on_ground = false; let mut on_ground = false; let mut on_ceiling = false; let mut attempts = 0; // Don't loop infinitely here // Don't jump too far at once let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3) .ceil() .max(1.0); let old_pos = pos.0; fn block_true(_: &Block) -> bool { true } for _ in 0..increments as usize { pos.0 += pos_delta / increments; const MAX_ATTEMPTS: usize = 16; // While the player is colliding with the terrain... while collision_with(pos.0, &terrain, block_true, near_iter.clone(), radius, z_range.clone()) && attempts < MAX_ATTEMPTS { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-radius, -radius, z_min), max: pos.0 + Vec3::new(radius, radius, z_max), }; // Determine the block that we are colliding with most (based on minimum // collision axis) let (_block_pos, block_aabb, block_height) = near_iter .clone() // Calculate the block's position in world space .map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k)) // Make sure the block is actually solid .filter_map(|block_pos| { if let Some(block) = terrain .get(block_pos) .ok() .filter(|block| block.is_solid()) { // Calculate block AABB Some(( block_pos, Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()), }, block.solid_height(), )) } else { None } }) // Determine whether the block's AABB collides with the player's AABB .filter(|(_, block_aabb, _)| block_aabb.collides_with_aabb(player_aabb)) // Find the maximum of the minimum collision axes (this bit is weird, trust me that it works) .min_by_key(|(_, block_aabb, _)| { ((block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5) .map(|e| e.abs()) .sum() * 1_000_000.0) as i32 }) .expect("Collision detected, but no colliding blocks found!"); // Find the intrusion vector of the collision let dir = player_aabb.collision_vector_with_aabb(block_aabb); // Determine an appropriate resolution vector (i.e: the minimum distance // needed to push out of the block) let max_axis = dir.map(|e| e.abs()).reduce_partial_min(); let resolve_dir = -dir.map(|e| { if e.abs().to_bits() == max_axis.to_bits() { e } else { 0.0 } }); // When the resolution direction is pointing upwards, we must be on the // ground if resolve_dir.z > 0.0 && vel.0.z <= 0.0 { on_ground = true; if !was_on_ground { land_on_grounds.push((entity, *vel)); } } else if resolve_dir.z < 0.0 && vel.0.z >= 0.0 { on_ceiling = true; } // When the resolution direction is non-vertical, we must be colliding // with a wall If the space above is free... if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), &terrain, block_true, near_iter.clone(), radius, z_range.clone()) // ...and we're being pushed out horizontally... && resolve_dir.z == 0.0 // ...and the vertical resolution direction is sufficiently great... && -dir.z > 0.1 // ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)... && (vel.0.z <= 0.0 || terrain .get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32)) .map(|block| block.is_solid()) .unwrap_or(false)) // ...and there is a collision with a block beneath our current hitbox... && collision_with( pos.0 + resolve_dir - Vec3::unit_z() * 1.05, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) { // ...block-hop! pos.0.z = (pos.0.z + 0.1).floor() + block_height; vel.0.z = 0.0; on_ground = true; break; } else { // Correct the velocity vel.0 = vel.0.map2(resolve_dir, |e, d| { if d * e.signum() < 0.0 { 0.0 } else { e } }); pos_delta *= resolve_dir.map(|e| if e != 0.0 { 0.0 } else { 1.0 }); } // Resolve the collision normally pos.0 += resolve_dir; attempts += 1; } if attempts == MAX_ATTEMPTS { vel.0 = Vec3::zero(); pos.0 = old_pos; break; } } if on_ceiling { physics_state.on_ceiling = true; } if on_ground { physics_state.on_ground = true; // If the space below us is free, then "snap" to the ground } else if collision_with( pos.0 - Vec3::unit_z() * 1.05, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) && vel.0.z < 0.0 && vel.0.z > -1.5 && was_on_ground && !collision_with( pos.0 - Vec3::unit_z() * 0.05, &terrain, |block| block.solid_height() >= (pos.0.z - 0.05).rem_euclid(1.0), near_iter.clone(), radius, z_range.clone(), ) { let snap_height = terrain .get( Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.05) .map(|e| e.floor() as i32), ) .ok() .filter(|block| block.is_solid()) .map(|block| block.solid_height()) .unwrap_or(0.0); pos.0.z = (pos.0.z - 0.05).floor() + snap_height; physics_state.on_ground = true; } let dirs = [ Vec3::unit_x(), Vec3::unit_y(), -Vec3::unit_x(), -Vec3::unit_y(), ]; if let (wall_dir, true) = dirs.iter().fold((Vec3::zero(), false), |(a, hit), dir| { if collision_with( pos.0 + *dir * 0.01, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) { (a + dir, true) } else { (a, hit) } }) { physics_state.on_wall = Some(wall_dir); } else { physics_state.on_wall = None; } // Figure out if we're in water physics_state.in_liquid = collision_iter( pos.0, &terrain, &|block| block.is_liquid(), // The liquid part of a liquid block always extends 1 block high. &|_block| 1.0, near_iter.clone(), radius, z_min..z_max, ) .max_by_key(|block_aabb| (block_aabb.max.z * 100.0) as i32) .map(|block_aabb| block_aabb.max.z - pos.0.z); }, Collider::Point => { let (dist, block) = terrain.ray(pos.0, pos.0 + pos_delta) .until(|block: &Block| block.is_filled()) .ignore_error().cast(); pos.0 += pos_delta.try_normalized().unwrap_or(Vec3::zero()) * dist; // Can't fail since we do ignore_error above if block.unwrap().is_some() { let block_center = pos.0.map(|e| e.floor()) + 0.5; let block_rpos = (pos.0 - block_center) .try_normalized() .unwrap_or(Vec3::zero()); // See whether we're on the top/bottom of a block, or the side if block_rpos.z.abs() > block_rpos.xy().map(|e| e.abs()).reduce_partial_max() { if block_rpos.z > 0.0 { physics_state.on_ground = true; } else { physics_state.on_ceiling = true; } vel.0.z = 0.0; } else { physics_state.on_wall = Some(if block_rpos.x.abs() > block_rpos.y.abs() { vel.0.x = 0.0; Vec3::unit_x() * -block_rpos.x.signum() } else { vel.0.y = 0.0; Vec3::unit_y() * -block_rpos.y.signum() }); } } physics_state.in_liquid = terrain.get(pos.0.map(|e| e.floor() as i32)) .ok() .and_then(|vox| vox.is_liquid().then_some(1.0)); }, } land_on_grounds }).reduce(Vec::new, |mut land_on_grounds_a, mut land_on_grounds_b| { land_on_grounds_a.append(&mut land_on_grounds_b); land_on_grounds_a }); drop(guard); land_on_grounds.into_iter().for_each(|(entity, vel)| { event_emitter.emit(ServerEvent::LandOnGround { entity, vel: vel.0 }); }); sys_metrics.phys_ns.store( start_time.elapsed().as_nanos() as u64, std::sync::atomic::Ordering::Relaxed, ); } }