mod diffusion; mod erosion; mod location; mod map; mod settlement; mod util; // Reexports pub use self::diffusion::diffusion; use self::erosion::Compute; pub use self::erosion::{ do_erosion, fill_sinks, get_drainage, get_lakes, get_multi_drainage, get_multi_rec, get_rivers, mrec_downhill, Alt, RiverData, RiverKind, }; pub use self::location::Location; pub use self::map::{MapConfig, MapDebug}; pub use self::settlement::Settlement; pub use self::util::{ cdf_irwin_hall, downhill, get_oceans, local_cells, map_edge_factor, neighbors, uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, HybridMulti as HybridMulti_, InverseCdf, ScaleBias, NEIGHBOR_DELTA, }; use crate::{ all::ForestKind, block::BlockGen, column::ColumnGen, generator::TownState, util::{seed_expan, FastNoise, RandomField, Sampler, StructureGen2d}, CONFIG, }; use common::{ assets, terrain::{BiomeKind, TerrainChunkSize}, vol::RectVolSize, }; use hashbrown::HashMap; use noise::{ BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RangeFunction, RidgedMulti, Seedable, SuperSimplex, Worley, }; use num::{Float, Signed}; use rand::{Rng, SeedableRng}; use rand_chacha::ChaChaRng; use rayon::prelude::*; use serde_derive::{Deserialize, Serialize}; use std::{ f32, f64, fs::File, io::{BufReader, BufWriter}, ops::{Add, Div, Mul, Neg, Sub}, path::PathBuf, sync::Arc, }; use vek::*; // NOTE: I suspect this is too small (1024 * 16 * 1024 * 16 * 8 doesn't fit in an i32), but we'll see // what happens, I guess! We could always store sizes >> 3. I think 32 or 64 is the absolute // limit though, and would require substantial changes. Also, 1024 * 16 * 1024 * 16 is no longer // cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for signed floats anyway) // but I think that is probably less important since I don't think we actually cast a chunk id to // float, just coordinates... could be wrong though! pub const WORLD_SIZE: Vec2 = Vec2 { x: 1024, y: 1024 }; /// A structure that holds cached noise values and cumulative distribution functions for the input /// that led to those values. See the definition of InverseCdf for a description of how to /// interpret the types of its fields. struct GenCdf { humid_base: InverseCdf, temp_base: InverseCdf, chaos: InverseCdf, alt: Box<[Alt]>, basement: Box<[Alt]>, water_alt: Box<[f32]>, dh: Box<[isize]>, /// NOTE: Until we hit 4096 × 4096, this should suffice since integers with an absolute value /// under 2^24 can be exactly represented in an f32. flux: Box<[Compute]>, pure_flux: InverseCdf, alt_no_water: InverseCdf, rivers: Box<[RiverData]>, } pub(crate) struct GenCtx { pub turb_x_nz: SuperSimplex, pub turb_y_nz: SuperSimplex, pub chaos_nz: RidgedMulti, pub alt_nz: HybridMulti_, pub hill_nz: SuperSimplex, pub temp_nz: Fbm, // Humidity noise pub humid_nz: Billow, // Small amounts of noise for simulating rough terrain. pub small_nz: BasicMulti, pub rock_nz: HybridMulti, pub cliff_nz: HybridMulti, pub warp_nz: FastNoise, pub tree_nz: BasicMulti, pub cave_0_nz: SuperSimplex, pub cave_1_nz: SuperSimplex, pub structure_gen: StructureGen2d, pub region_gen: StructureGen2d, pub cliff_gen: StructureGen2d, pub fast_turb_x_nz: FastNoise, pub fast_turb_y_nz: FastNoise, pub town_gen: StructureGen2d, // pub loc_gen: StructureGen2d, pub river_seed: RandomField, pub rock_strength_nz: Fbm, pub uplift_nz: Worley, } #[derive(Clone, Debug, Deserialize, Serialize)] pub enum FileOpts { /// If set, generate the world map and do not try to save to or load from file /// (default). Generate, /// If set, generate the world map and save the world file (path is created /// the same way screenshot paths are). Save, /// If set, load the world file from this path in legacy format (errors if /// path not found). This option may be removed at some point, since it only applies to maps /// generated before map saving was merged into master. LoadLegacy(PathBuf), /// If set, load the world file from this path (errors if path not found). Load(PathBuf), /// If set, look for the world file at this asset specifier (errors if asset is not found). /// /// NOTE: Could stand to merge this with `Load` and construct an enum that can handle either a /// PathBuf or an asset specifier, at some point. LoadAsset(String), } impl Default for FileOpts { fn default() -> Self { Self::Generate } } pub struct WorldOpts { /// Set to false to disable seeding elements during worldgen. pub seed_elements: bool, pub world_file: FileOpts, } impl Default for WorldOpts { fn default() -> Self { Self { seed_elements: true, world_file: Default::default(), } } } /// LEGACY: Remove when people stop caring. #[derive(Serialize, Deserialize)] #[repr(C)] pub struct WorldFileLegacy { /// Saved altitude height map. pub alt: Box<[Alt]>, /// Saved basement height map. pub basement: Box<[Alt]>, } /// Version of the world map intended for use in Veloren 0.5.0. #[derive(Serialize, Deserialize)] #[repr(C)] pub struct WorldMap_0_5_0 { /// Saved altitude height map. pub alt: Box<[Alt]>, /// Saved basement height map. pub basement: Box<[Alt]>, } /// Errors when converting a map to the most recent type (currently, /// shared by the various map types, but at some point we might switch to /// version-specific errors if it feels worthwhile). #[derive(Debug)] pub enum WorldFileError { /// Map size was invalid, and it can't be converted to a valid one. WorldSizeInvalid, } /// WORLD MAP. /// /// A way to store certain components between runs of map generation. Only intended for /// development purposes--no attempt is made to detect map invalidation or make sure that the map /// is synchronized with updates to noise-rs, changes to other parameters, etc. /// /// The map is verisoned to enable format detection between versions of Veloren, so that when we /// update the map format we don't break existing maps (or at least, we will try hard not to break /// maps between versions; if we can't avoid it, we can at least give a reasonable error message). /// /// NOTE: We rely somemwhat heavily on the implementation specifics of bincode to make sure this is /// backwards compatible. When adding new variants here, Be very careful to make sure tha the old /// variants are preserved in the correct order and with the correct names and indices, and make /// sure to keep the #[repr(u32)]! /// /// All non-legacy versions of world files should (ideally) fit in this format. Since the format /// contains a version and is designed to be extensible backwards-compatibly, the only /// reason not to use this forever would be if we decided to move away from BinCode, or /// store data across multiple files (or something else weird I guess). /// /// Update this when you add a new map version. #[derive(Serialize, Deserialize)] #[repr(u32)] pub enum WorldFile { Veloren_0_5_0(WorldMap_0_5_0) = 0, } /// Data for the most recent map type. Update this when you add a new map verson. pub type ModernMap = WorldMap_0_5_0; impl WorldFileLegacy { #[inline] /// Idea: each map type except the latest knows how to transform /// into the the subsequent map version, and each map type including the /// latest exposes an "into_modern()" method that converts this map type /// to the modern map type. Thus, to migrate a map from an old format to a new /// format, we just need to transform the old format to the subsequent map /// version, and then call .into_modern() on that--this should construct a call chain that /// ultimately ends up with a modern version. pub fn into_modern(self) -> Result { if self.alt.len() != self.basement.len() || self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize { return Err(WorldFileError::WorldSizeInvalid); } /* let f = |h| h;// / 4.0; let mut map = map; map.alt.par_iter_mut() .zip(map.basement.par_iter_mut()) .for_each(|(mut h, mut b)| { *h = f(*h); *b = f(*b); }); */ let map = WorldMap_0_5_0 { alt: self.alt, basement: self.basement, }; map.into_modern() } } impl WorldMap_0_5_0 { #[inline] pub fn into_modern(self) -> Result { if self.alt.len() != self.basement.len() || self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize { return Err(WorldFileError::WorldSizeInvalid); } Ok(self) } } impl WorldFile { /// Turns map data from the latest version into a versioned WorldFile ready for serialization. /// Whenever a new map is updated, just change the variant we construct here to make sure we're /// using the latest map version. pub fn new(map: ModernMap) -> Self { WorldFile::Veloren_0_5_0(map) } #[inline] /// Turns a WorldFile into the latest version. Whenever a new map version is added, just add /// it to this match statement. pub fn into_modern(self) -> Result { match self { WorldFile::Veloren_0_5_0(map) => map.into_modern(), } } } pub struct WorldSim { pub seed: u32, pub(crate) chunks: Vec, pub(crate) locations: Vec, pub(crate) gen_ctx: GenCtx, pub rng: ChaChaRng, } impl WorldSim { pub fn generate(seed: u32, opts: WorldOpts) -> Self { let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed)); let continent_scale = 5_000.0f64 /*32768.0*/ .div(32.0) .mul(TerrainChunkSize::RECT_SIZE.x as f64); let rock_lacunarity = /*0.5*/2.0/*HybridMulti::DEFAULT_LACUNARITY*/; let uplift_scale = /*512.0*//*256.0*/128.0; let uplift_turb_scale = uplift_scale / 4.0/*32.0*//*64.0*/; // NOTE: Changing order will significantly change WorldGen, so try not to! let gen_ctx = GenCtx { turb_x_nz: SuperSimplex::new().set_seed(rng.gen()), turb_y_nz: SuperSimplex::new().set_seed(rng.gen()), chaos_nz: RidgedMulti::new() .set_octaves(/*7*//*3*/ /*7*//*3*/7) .set_frequency( RidgedMulti::DEFAULT_FREQUENCY * (5_000.0 / continent_scale) // /*RidgedMulti::DEFAULT_FREQUENCY **/ 3_000.0 * 8.0 / continent_scale, ) // .set_persistence(RidgedMulti::DEFAULT_LACUNARITY.powf(-(1.0 - 0.5))) .set_seed(rng.gen()), hill_nz: SuperSimplex::new().set_seed(rng.gen()), alt_nz: HybridMulti_::new() .set_octaves(/*3*//*2*/ /*8*//*3*/8) // 1/2048*32*1024 = 16 .set_frequency( /*HybridMulti::DEFAULT_FREQUENCY*/ // (2^8*(10000/5000/10000))*32 = per-chunk (10_000.0/* * 2.0*/ / continent_scale) as f64, ) // .set_frequency(1.0 / ((1 << 0) as f64)) // .set_lacunarity(1.0) // persistence = lacunarity^(-(1.0 - fractal increment)) .set_lacunarity(HybridMulti_::DEFAULT_LACUNARITY) .set_persistence(HybridMulti_::DEFAULT_LACUNARITY.powf(-(1.0 - /*0.75*/0.0))) // .set_persistence(/*0.5*//*0.5*/0.5 + 1.0 / ((1 << 6) as f64)) // .set_offset(/*0.7*//*0.5*//*0.75*/0.7) .set_offset(/*0.7*//*0.5*//*0.75*/0.0) .set_seed(rng.gen()), //temp_nz: SuperSimplex::new().set_seed(rng.gen()), temp_nz: Fbm::new() .set_octaves(6) .set_persistence(0.5) // 1/2^14*1024*32 = 2 // 1/(2^14-2^12)*1024*32 = 8/3 ~= 3 .set_frequency( /*4.0 / /*(1024.0 * 4.0/* * 8.0*/)*//*32.0*/((1 << 6) * (WORLD_SIZE.x)) as f64*/ 1.0 / (((1 << 6) * 64) as f64), ) // .set_frequency(1.0 / 1024.0) // .set_frequency(1.0 / (1024.0 * 8.0)) .set_lacunarity(2.0) .set_seed(rng.gen()), small_nz: BasicMulti::new().set_octaves(2).set_seed(rng.gen()), rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()), cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()), warp_nz: FastNoise::new(rng.gen()), //BasicMulti::new().set_octaves(3).set_seed(gen_seed()), tree_nz: BasicMulti::new() .set_octaves(12) .set_persistence(0.75) .set_seed(rng.gen()), cave_0_nz: SuperSimplex::new().set_seed(rng.gen()), cave_1_nz: SuperSimplex::new().set_seed(rng.gen()), structure_gen: StructureGen2d::new(rng.gen(), 32, 16), region_gen: StructureGen2d::new(rng.gen(), 400, 96), cliff_gen: StructureGen2d::new(rng.gen(), 80, 56), humid_nz: Billow::new() .set_octaves(9) .set_persistence(0.4) .set_frequency(0.2) // .set_octaves(6) // .set_persistence(0.5) .set_seed(rng.gen()), fast_turb_x_nz: FastNoise::new(rng.gen()), fast_turb_y_nz: FastNoise::new(rng.gen()), town_gen: StructureGen2d::new(rng.gen(), 2048, 1024), river_seed: RandomField::new(rng.gen()), rock_strength_nz: Fbm/*HybridMulti_*//*BasicMulti*//*Fbm*/::new() .set_octaves(/*6*//*5*//*4*//*5*//*4*//*6*/10) .set_lacunarity(rock_lacunarity) // persistence = lacunarity^(-(1.0 - fractal increment)) // NOTE: In paper, fractal increment is roughly 0.25. // .set_offset(0.0) // .set_offset(0.7) .set_persistence(/*0.9*/ /*2.0*//*1.5*//*HybridMulti::DEFAULT_LACUNARITY*/rock_lacunarity.powf(-(1.0 - 0.25/*0.75*//*0.9*/))) // 256*32/2^4 // (0.5^(-(1.0-0.9)))^4/256/32*2^4*16*32 // (0.5^(-(1.0-0.9)))^4/256/32*2^4*256*4 // (0.5^(-(1.0-0.9)))^1/256/32*2^4*256*4 // (2^(-(1.0-0.9)))^4 // 16.0 .set_frequency(/*0.9*/ /*Fbm*//*HybridMulti_::DEFAULT_FREQUENCY*/1.0 / (2.0/*8.0*//*256.0*//*1.0*//*16.0*/ * TerrainChunkSize::RECT_SIZE.x as f64/*4.0*//* TerrainChunkSize::RECT_SIZE.x as f64 */ * 2.0.powi(10 - 1))) // .set_frequency(/*0.9*/ /*Fbm*//*HybridMulti_::DEFAULT_FREQUENCY*/1.0 / (8.0/*8.0*//*256.0*//*1.0*//*16.0*/ * 32.0/*4.0*//* TerrainChunkSize::RECT_SIZE.x as f64 */ * 2.0.powi(10 - 1))) // .set_persistence(/*0.9*/ /*2.0*/0.67) // .set_frequency(/*0.9*/ Fbm::DEFAULT_FREQUENCY / (2.0 * 32.0)) // .set_lacunarity(0.5) .set_seed(rng.gen()), uplift_nz: Worley::new() .set_seed(rng.gen()) .set_frequency(1.0 / (TerrainChunkSize::RECT_SIZE.x as f64 * uplift_scale)) // .set_displacement(/*0.5*/0.0) .set_displacement(/*0.5*/1.0) .set_range_function(RangeFunction::Euclidean), // .enable_range(true), // g_nz: RidgedMulti::new() // loc_gen: StructureGen2d::new(rng.gen(), 2048, 1024), }; let river_seed = &gen_ctx.river_seed; let rock_strength_nz = &gen_ctx.rock_strength_nz; // NOTE: octaves should definitely fit into i32, but we should check anyway to make // sure. /* assert!(rock_strength_nz.persistence > 0.0); let rock_strength_scale = (1..rock_strength_nz.octaves as i32) .map(|octave| rock_strength_nz.persistence.powi(octave + 1)) .sum::() // For some reason, this is "scaled" by 3.0. .mul(3.0); let rock_strength_nz = ScaleBias::new(&rock_strength_nz) .set_scale(1.0 / rock_strength_scale); */ // Suppose the old world has grid spacing Δx' = Δy', new Δx = Δy. // We define grid_scale such that Δx = height_scale * Δx' ⇒ // grid_scale = Δx / Δx'. let grid_scale = 1.0f64 / 4.0/*1.0*/; // Now, suppose we want to generate a world with "similar" topography, defined in this case // as having roughly equal slopes at steady state, with the simulation taking roughly as // many steps to get to the point the previous world was at when it finished being // simulated. // // Some computations with our coupled SPL/debris flow give us (for slope S constant) the following // suggested scaling parameters to make this work: // k_fs_scale ≡ (K𝑓 / K𝑓') = grid_scale^(-2m) = grid_scale^(-2θn) let k_fs_scale = |theta, n| grid_scale.powf(-2.0 * (theta * n) as f64); // k_da_scale ≡ (K_da / K_da') = grid_scale^(-2q) let k_da_scale = |q| grid_scale.powf(-2.0 * q); // // Some other estimated parameters are harder to come by and *much* more dubious, not being accurate // for the coupled equation. But for the SPL only one we roughly find, for h the height at steady // state and time τ = time to steady state, with Hack's Law estimated b = 2.0 and various other // simplifying assumptions, the estimate: // height_scale ≡ (h / h') = grid_scale^(n) let height_scale = |n: f32| grid_scale.powf(n as f64) as Alt; // time_scale ≡ (τ / τ') = grid_scale^(n) let time_scale = |n: f32| grid_scale.powf(n as f64); // // Based on this estimate, we have: // delta_t_scale ≡ (Δt / Δt') = time_scale let delta_t_scale = |n: f32| time_scale(n); // alpha_scale ≡ (α / α') = height_scale^(-1) let alpha_scale = |n: f32| height_scale(n).recip() as f32; // // Slightly more dubiously (need to work out the math better) we find: // k_d_scale ≡ (K_d / K_d') = grid_scale^2 / (height_scale * time_scale) let k_d_scale = |n: f32| /*grid_scale.powi(2) / time_scale(n)*//*height_scale(n)*/grid_scale.powi(2) / (/*height_scale(n) * */time_scale(n))/* * (1.0 / 16.0)*/; // epsilon_0_scale ≡ (ε₀ / ε₀') = height_scale(n) / time_scale(n) let epsilon_0_scale = |n| /*height_scale(n) as f32*//*1.0*/(height_scale(n) / time_scale(n)) as f32/* * 1.0 / 4.0*/; // Approximate n for purposes of computation of parameters above over the whole grid (when // a chunk isn't available). let n_approx = 1.0; let max_erosion_per_delta_t = /*8.0*//*32.0*//*1.0*//*32.0*//*32.0*//*16.0*//*64.0*//*32.0*/64.0/*128.0*//*1.0*//*0.2 * /*100.0*/250.0*//*128.0*//*16.0*//*128.0*//*32.0*/ * delta_t_scale(n_approx); let erosion_pow_low = /*0.25*//*1.5*//*2.0*//*0.5*//*4.0*//*0.25*//*1.0*//*2.0*//*1.5*//*1.5*//*0.35*//*0.43*//*0.5*//*0.45*//*0.37*/1.002; let erosion_pow_high = /*1.5*//*1.0*//*0.55*//*0.51*//*2.0*/1.002; let erosion_center = /*0.45*//*0.75*//*0.75*//*0.5*//*0.75*/0.5; let n_steps = /*200*//*10_000*//*1000*//*50*//*100*/100; //100; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200; let n_small_steps = 0; //25;//8;//50;//50;//8;//8;//8;//8;//8; // 8 let n_post_load_steps = 0; //25;//8 // Logistic regression. Make sure x ∈ (0, 1). let logit = |x: f64| x.ln() - (-x).ln_1p(); // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi))) let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI; let logistic_base = /*3.0f64.sqrt() * f64::consts::FRAC_1_PI*/1.0f64; // Assumes μ = 0, σ = 1 let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5; let exp_inverse_cdf = |x: f64/*, pow: f64*/| -(-x).ln_1p()/* / ln(pow)*/; // 2 / pi * ln(tan(pi/2 * p)) let hypsec_inverse_cdf = |x: f64| f64::consts::FRAC_2_PI * ((x * f64::consts::FRAC_PI_2).tan().ln()); let min_epsilon = 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5); let max_epsilon = (1.0 - 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64)) .min(1.0 - f64::EPSILON as f64 * 0.5); // fractal dimension should be between 0 and 0.9999... // (lacunarity^octaves)^(-H) = persistence^(octaves) // lacunarity^(octaves*-H) = persistence^(octaves) // e^(-octaves*H*ln(lacunarity)) = e^(octaves * ln(persistence)) // -octaves * H * ln(lacunarity) = octaves * ln(persistence) // -H = ln(persistence) / ln(lacunarity) // H = -ln(persistence) / ln(lacunarity) // ln(persistence) = -H * ln(lacunarity) // persistence = lacunarity^(-H) // // -ln(2^(-0.25))/ln(2) = 0.25 // // -ln(2^(-0.1))/ln(2) // // 0 = -ln(persistence) / ln(lacunarity) // 0 = ln(persistence) => persistence = e^0 = 1 // // 1 = -ln(persistence) / ln(lacunarity) // -ln(lacunarity) = ln(persistence) // e^(-ln(lacunarity)) = e^(ln(persistence)) // 1 / lacunarity = persistence // // Ergo, we should not set fractal dimension to anything not between 1 / lacunarity and 1. // // dimension = -ln(0.25)/ln(2*pi/3) = 1.875 // // (2*pi/3^1)^(-(-ln(0.25)/ln(2*pi/3))) = 0.25 // // Default should be at most 1 / lacunarity. // // (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3)) // // -ln(0.25)/ln(2*pi/3) = 1.88 // // (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3)) // // 2 * pi / 3 // // 2.0^(2(-ln(1.5)/ln(2))) // (1 / 1.5)^(2) // No NaNs in these uniform vectors, since the original noise value always returns Some. let ((alt_base, _), (chaos, _)) = rayon::join( || { uniform_noise(|_, wposf| { // "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value // is from -0.35 * (CONFIG.mountain_scale * 1.05) to // 0.35 * (CONFIG.mountain_scale * 0.95), but value here is from -0.3675 to 0.3325). Some( (gen_ctx .alt_nz .get((wposf.div(10_000.0)).into_array()) .min(1.0) .max(-1.0)/* .mul(0.25) .add(0.125) */) // .add(0.5) .sub(0.05) // .add(0.05) // .add(0.075) .mul(0.35), /*-0.0175*/ ) }) }, || { uniform_noise(|_, wposf| { // From 0 to 1.6, but the distribution before the max is from -1 and 1.6, so there is // a 50% chance that hill will end up at 0.3 or lower, and probably a very high // change it will be exactly 0. let hill = (0.0f64 //.add(0.0) + gen_ctx .hill_nz .get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(1_500.0)).into_array()) .min(1.0) .max(-1.0) .mul(1.0) + gen_ctx .hill_nz .get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(400.0)).into_array()) .min(1.0) .max(-1.0) .mul(0.3)) .add(0.3) .max(0.0); // chaos produces a value in [0.12, 1.32]. It is a meta-level factor intended to // reflect how "chaotic" the region is--how much weird stuff is going on on this // terrain. Some( ((gen_ctx .chaos_nz .get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0)) .add(1.0) .mul(0.5) // [0, 1] * [0.4, 1] = [0, 1] (but probably towards the lower end) //.mul(1.0) .mul( (gen_ctx .chaos_nz .get((wposf.div(6_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .max(0.4) .min(1.0), ) // Chaos is always increased by a little when we're on a hill (but remember // that hill is 0.3 or less about 50% of the time). // [0, 1] + 0.2 * [0, 1.6] = [0, 1.32] .add(0.2 * hill) // We can't have *no* chaos! .max(0.12)) as f32, ) }) }, ); // We ignore sea level because we actually want to be relative to sea level here and want // things in CONFIG.mountain_scale units, but otherwise this is a correct altitude // calculation. Note that this is using the "unadjusted" temperature. // // No NaNs in these uniform vectors, since the original noise value always returns Some. let (alt_old, /*alt_old_inverse*/ _) = uniform_noise(|posi, wposf| { // This is the extension upwards from the base added to some extra noise from -1 to // 1. // // The extra noise is multiplied by alt_main (the mountain part of the extension) // powered to 0.8 and clamped to [0.15, 1], to get a value between [-1, 1] again. // // The sides then receive the sequence (y * 0.3 + 1.0) * 0.4, so we have // [-1*1*(1*0.3+1)*0.4, 1*(1*0.3+1)*0.4] = [-0.52, 0.52]. // // Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and // gen_ctx = -1, 0+-1*(0*.3+1)*0.4) and 1.52 (if alt_main = 1 and gen_ctx = 1). // Most of the points are above 0. // // Next, we add again by a sin of alt_main (between [-1, 1])^pow, getting // us (after adjusting for sign) another value between [-1, 1], and then this is // multiplied by 0.045 to get [-0.045, 0.045], which is added to [-0.4, 0.52] to get // [-0.445, 0.565]. let alt_main = { // Extension upwards from the base. A positive number from 0 to 1 curved to be // maximal at 0. Also to be multiplied by CONFIG.mountain_scale. let alt_main = (gen_ctx .alt_nz .get((wposf.div(2_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() // 0.5 .powf(1.35); fn spring(x: f64, pow: f64) -> f64 { x.abs().powf(pow) * x.signum() } (0.0 + alt_main/*0.4*/ + (gen_ctx .small_nz .get((wposf.mul(32.0).div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)).div(300.0)).into_array()) .min(1.0) .max(-1.0)) .mul(alt_main.powf(0.8).max(/*0.25*/ 0.15)) .mul(0.3) .add(1.0) .mul(0.4) // 0.52 + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045)) }; // Now we can compute the final altitude using chaos. // We multiply by chaos clamped to [0.1, 1.32] to get a value between [0.03, 2.232] // for alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea // level to get an adjusted value, then multiply the whole thing by map_edge_factor // (TODO: compute final bounds). // // [-.3675, .3325] + [-0.445, 0.565] * [0.12, 1.32]^1.2 // ~ [-.3675, .3325] + [-0.445, 0.565] * [0.07, 1.40] // = [-.3675, .3325] + ([-0.5785, 0.7345]) // = [-0.946, 1.067] Some( ((alt_base[posi].1 + alt_main /*1.0*/ .mul( (chaos[posi].1 as f64) /*.mul(2.0).sub(1.0).max(0.0)*/ .powf(1.2), /*0.25)*//*0.285*/ )/*0.1425*/) .mul(map_edge_factor(posi) as f64) .add( (CONFIG.sea_level as f64) .div(CONFIG.mountain_scale as f64) .mul(map_edge_factor(posi) as f64), ) .sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64))) as f32, ) /* Some( // FIXME: May fail on big-endian platforms. ((alt_base[posi].1 as f64 + 0.5 + (/*alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low)) + */alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2)) .mul(map_edge_factor(posi) as f64) .add( (CONFIG.sea_level as f64) .div(CONFIG.mountain_scale as f64) .mul(map_edge_factor(posi) as f64), ) .sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64))) as f32, ) */ }); // Calculate oceans. let is_ocean = get_oceans(|posi: usize| alt_old[posi].1); let is_ocean_fn = |posi: usize| is_ocean[posi]; /* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|i| map_edge_factor(i) == 0.0) .collect::>(); */ let turb_wposf_div = 8.0/*64.0*/; let n_func = |posi| { if is_ocean_fn(posi) { return 1.0; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); /* if uheight > 0.8 { 1.5 } else { 1.0 } */ // ((1.5 - 0.6) * uheight + 0.6) as f32 // ((1.5 - 1.0) * uheight + 1.0) as f32 // ((3.5 - 1.5) * (1.0 - uheight) + 1.5) as f32 1.0 }; let old_height = |posi: usize| { alt_old[posi].1 * CONFIG.mountain_scale * height_scale(n_func(posi)) as f32 }; let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true); // Recalculate altitudes without oceans. // NaNs in these uniform vectors wherever is_ocean_fn returns true. let (alt_old_no_ocean, alt_old_inverse) = uniform_noise(|posi, _| { if is_ocean_fn(posi) { None } else { Some(old_height(posi) /*.abs()*/) } }); let (uplift_uniform, _) = uniform_noise(|posi, wposf| { if is_ocean_fn(posi) { None } else { let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let udist = uplift_nz_dist .get(turb_wposf.into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); */ chaos[posi].1; let uchaos_1 = (uchaos as f64) / 1.32; let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64 - 0.5; assert!(udist >= 0.0); assert!(udist <= 1.0); let uheight_1 = uheight; //.powf(2.0); let udist_1 = (0.5 - udist).mul(2.0).max(0.0); let udist_2 = udist.mul(2.0).min(1.0); let udist_3 = (1.0 - udist).max(0.0); let udist_4 = udist.min(1.0); let variation = 1.0.min( 64.0 * 64.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64 * (TerrainChunkSize::RECT_SIZE.x as f64 * TerrainChunkSize::RECT_SIZE.y as f64 / 128.0 / 128.0)), ); let variation_1 = (uheight * /*udist_2*/udist_4).min(variation); let height = (oheight + 0.5).powf(2.0); // 1.0 - variation + variation * uchaos_1; // uheight * /*udist_2*/udist_4 - variation_1 + variation_1 * uchaos_1; // uheight * (0.5 + 0.5 * ((uchaos as f64) / 1.32)) - 0.125; // 0.2; // 1.0; // uheight_1; // uheight_1 * (0.8 + 0.2 * oheight.signum() * oheight.abs().powf(0.25)); // uheight_1 * (/*udist_2*/udist.powf(2.0) * (f64::consts::PI * 2.0 * (1.0 / (1.0 - udist).max(f64::EPSILON)).min(2.5)/*udist * 5.0*/ * 2.0).cos().mul(0.5).add(0.5)); // uheight * udist_ * (udist_ * 4.0 * 2 * f64::consts::PI).sin() // uheight; // (0.8 * uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0); // ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * udist_2.powf(2.0)).max(0.0).min(1.0); // ((0.8 - 0.2) * uheight + 0.2 + oheight.signum() * oheight.abs().powf(/*0.5*/2.0) * 0.2).max(0.0).min(1.0); // (0.8 * uheight * udist_1 + 0.8 * udist_2 + oheight.powf(2.0) * 0.2).max(0.0).min(1.0); /* uheight * 0.8 * udist_1.powf(2.0) + /*exp_inverse_cdf*/(oheight/*.max(0.0).min(max_epsilon).abs()*/).powf(2.0) * 0.2 * udist_2.powf(2.0); */ // (uheight + oheight.powf(2.0) * 0.05).max(0.0).min(1.0); // (uheight + oheight.powf(2.0) * 0.2).max(0.0).min(1.0); // * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/ // let height = uheight * (0.5 - udist) * 0.8 + (oheight.signum() * oheight.max(0.0).abs().powf(2.0)) * 0.2;// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/ Some(height) } }); let old_height_uniform = |posi: usize| alt_old_no_ocean[posi].0; let alt_old_min_uniform = 0.0; let alt_old_max_uniform = 1.0; let alt_old_center_uniform = erosion_center; let (_alt_old_min_index, alt_old_min) = alt_old_inverse.first().unwrap(); let (_alt_old_max_index, alt_old_max) = alt_old_inverse.last().unwrap(); let (_alt_old_mid_index, alt_old_mid) = alt_old_inverse[(alt_old_inverse.len() as f64 * erosion_center) as usize]; let alt_old_center = ((alt_old_mid - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64); /* // Find the minimum and maximum original altitudes. // NOTE: Will panic if there is no land, and will not work properly if the minimum and // maximum land altitude are identical (will most likely panic later). let old_height_uniform = |posi: usize| alt_old[posi].0; let (alt_old_min_index, _alt_old_min) = alt_old_inverse .iter() .copied() .find(|&(_, h)| h > 0.0) .unwrap(); let &(alt_old_max_index, _alt_old_max) = alt_old_inverse.last().unwrap(); let alt_old_min_uniform = alt_old[alt_old_min_index].0; let alt_old_max_uniform = alt_old[alt_old_max_index].0; */ // Perform some erosion. // 2^((2^10-2)/256) = 15.91... // -ln(1-(1-(2^(-22)*0.5))) // -ln(1-(1-(2^(-53)*0.5))) // ((-ln(1-((1-2^(-53)*0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e)) // ((-ln(1-((0.5))))/ln(2))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(2)) // ((-ln(1-((0.5))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(e)) // ((-ln(1-((0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e)) // ((-ln(1-((1-2^(-53)))))/ln(1.002))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-10*2)*0.5)) // ((-ln(1-((0.9999999999999999))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-53)*0.5)) // // ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9))) // ((-ln(1-((2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9))) // ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1.002)) // ((ln(0.6)-ln(1-0.6)) - (ln(1/(2048*2048))-ln((1-1/(2048*2048)))))/((ln(1-1/(2048*2048))-ln(1-(1-1/(2048*2048)))) - (ln(1/(2048*2048))-ln((1-1/(2048*2048))))) let inv_func = |x: f64| x/*exp_inverse_cdf*//*logit*//*hypsec_inverse_cdf*/; let alt_exp_min_uniform = /*exp_inverse_cdf*//*logit*/inv_func(min_epsilon); let alt_exp_max_uniform = /*exp_inverse_cdf*//*logit*/inv_func(max_epsilon); // let erosion_pow = 2.0; // let n_steps = 100;//150; // let erosion_factor = |x: f64| logistic_cdf(erosion_pow * logit(x)); let log_odds = |x: f64| { logit(x) - logit( /*erosion_center*/ alt_old_center_uniform, /*alt_old_center*/ ) }; /* let erosion_factor = |x: f64| logistic_cdf(logistic_base * if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * log_odds(x))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs( ).powf(erosion_pow).mul(0.5))*/; */ let erosion_factor = |x: f64| (/*if x <= /*erosion_center*/alt_old_center_uniform/*alt_old_center*/ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * */(/*exp_inverse_cdf*//*logit*/inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform))/*0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs( ).powf(erosion_pow).mul(0.5))*//*.powf(0.5)*//*.powf(1.5)*//*.powf(2.0)*/; let rock_strength_div_factor = /*8.0*/(2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0; // let time_scale = 1.0; //4.0/*4.0*/; let theta_func = |posi| 0.4; let kf_func = { |posi| { let kf_scale_i = k_fs_scale(theta_func(posi), n_func(posi)) as f64; // let precip_mul = (0.25).powf(m); if is_ocean_fn(posi) { // multiplied by height_scale^(2m) to account for change in area. return 1.0e-4 * kf_scale_i/* / time_scale*/; // .powf(-(1.0 - 2.0 * m_i))/* * 4.0*/; // return 2.0e-5; // return 2.0e-6; // return 2.0e-10; // return 0.0; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); */ chaos[posi].1; let oheight = /*alt_old*//*alt_base*/alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].0 as f64; let oheight_2 = /*alt_old*//*alt_base*/(alt_old_no_ocean[/*(turb_posi / 64) * 64*/posi].1 as f64 / CONFIG.mountain_scale as f64); let kf_i = // kf = 1.5e-4: high-high (plateau [fan sediment]) // kf = 1e-4: high (plateau) // kf = 2e-5: normal (dike [unexposed]) // kf = 1e-6: normal-low (dike [exposed]) // kf = 2e-6: low (mountain) // -- // kf = 2.5e-7 to 8e-7: very low (Cordonnier papers on plate tectonics) // ((1.0 - uheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) as f32 // // ACTUAL recorded values worldwide: much lower... // // Or maybe not? Getting something like 2e-3... // // ...or 8.345e5. // ((1.0 - uheight) * (5e-5 - 9.88e-15) + 9.88e-15) // ((1.0 - uheight) * (1.5e-4 - 9.88e-15) + 9.88e-15) // ((1.0 - uheight) * (8.345e5 - 2.0e-6) + 2.0e-6) as f32 // ((1.0 - uheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) // ((1.0 - uheight) * (0.5 + 0.5 * ((1.32 - uchaos as f64) / 1.32)) * (1.5e-4 - 2.0e-6) + 2.0e-6) // ((1.0 - uheight) * (0.5 + 0.5 * /*((1.32 - uchaos as f64) / 1.32)*/oheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) // ((1.0 - uheight) * (0.5 - 0.5 * /*((1.32 - uchaos as f64) / 1.32)*/oheight_2) * (1.5e-4 - 2.0e-6) + 2.0e-6) // ((1.0 - uheight) * (0.5 - 0.5 * /*((1.32 - uchaos as f64) / 1.32)*/oheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) // 2e-5 // multiplied by height_scale^(2m) to account for change in area. // 2.5e-6/* / time_scale*//* / 4.0 * 0.25 *//* * 4.0*/ 1.0e-6 // 2.0e-6 // 2.9e-10 // ((1.0 - uheight) * (5e-5 - 2.9e-10) + 2.9e-10) // ((1.0 - uheight) * (5e-5 - 2.9e-14) + 2.9e-14) ; kf_i * kf_scale_i } }; let kd_func = { |posi| { let n = n_func(posi); let kd_scale_i = k_d_scale(n); if is_ocean_fn(posi) { let kd_i = /*1.0e-2*/ 1.0e-2 / 4.0 ; kd_i * kd_scale_i; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); */ chaos[posi].1; // kd = 1e-1: high (mountain, dike) // kd = 1.5e-2: normal-high (plateau [fan sediment]) // kd = 1e-2: normal (plateau) // multiplied by height_scale² to account for change in area, then divided by // time_scale to account for lower dt. let kd_i = // 1.0e-2 * kd_scale_i;// m_old^2 / y * (1 m_new / 4 m_old)^2 1.10e-2 / 4.0 // (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2) // ((1.0 - uheight) * (0.5 + 0.5 * ((1.32 - uchaos as f64) / 1.32)) * (1.0e-2 - 1.0e-3) + 1.0e-3) // (uheight * (1.0e-2 - 1.0e-3) + 1.0e-3) / 2.0 ; kd_i * kd_scale_i } }; let g_func = |posi| { if /*is_ocean_fn(posi)*/ map_edge_factor(posi) == 0.0 { return 0.0; // return 5.0; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); */ chaos[posi].1; assert!(uchaos <= 1.32); // G = d* v_s / p_0, where // v_s is the settling velocity of sediment grains // p_0 is the mean precipitation rate // d* is the sediment concentration ratio (between concentration near riverbed // interface, and average concentration over the water column). // d* varies with Rouse number which defines relative contribution of bed, suspended, // and washed loads. // // G is typically on the order of 1 or greater. However, we are only guaranteed to // converge for G ≤ 1, so we keep it in the chaos range of [0.12, 1.32]. // (((1.32 - uchaos) / 1.32).powf(0.75) * 1.32).min(/*1.1*/1.0) // ((1.32 - 0.12) * (1.0 - uheight) + 0.12) as f32 // 1.1 * (1.0 - uheight) as f32 // 1.0 * (1.0 - uheight) as f32 // 1.0 // 5.0 // 10.0 // 2.0 // 0.0 1.0 // 4.0 // 1.0 // 1.5 }; let epsilon_0_func = |posi| { // epsilon_0_scale is roughly [using Hack's Law with b = 2 and SPL without debris flow or // hillslopes] equal to the ratio of the old to new area, to the power of -n_i. let epsilon_0_scale_i = epsilon_0_scale(n_func(posi)); if is_ocean_fn(posi) { // marine: ε₀ = 2.078e-3 // divide by height scale, multiplied by time_scale, cancels out to 1; idea is that // we are finishing in time τ = τ' * height_scale. We have production // rate // // ∆P = ε₀ e^(-αH) Δt // = ε₀ e^(-α' / height_scale * (H' * height_scale)) (Δt' * height_scale) // = ε₀ e^(-α' H') (Δt' * height_scale) // // while the old production rate was // // ∆P' = ε₀' e^(-α'H') Δt'. // // BUT, we don't actually want the same production rate, but rather the same // *relative* production rate, which means we actually want to multiply by // height_scale again... this entails multiplying the right hand side by the // production rate, which gets us // // ΔP = ΔP' * height_scale // ΔP / height_scale = ΔP' // // so to equate them we need // // ε₀ e^(-α' H') (Δt' * height_scale) / height_scale = ε₀' e^(-α' H') Δt' // ε₀ = ε₀' let epsilon_0_i = //2.078e-3 2.078e-3 / 4.0 ; return epsilon_0_i * epsilon_0_scale_i/* * time_scale*/; // return 5.0; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); /* let n_i = n_func(posi); let height_scale = height_scale(n_i); let uheight = uheight / height_scale; */ let wposf3 = Vec3::new( wposf.x, wposf.y, uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor, ); let rock_strength = gen_ctx .rock_strength_nz .get(wposf3.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let center = /*0.25*/0.4; let dmin = center - /*0.15;//0.05*/0.05; let dmax = center + /*0.05*//*0.10*/0.05; //0.05; let log_odds = |x: f64| logit(x) - logit(center); let ustrength = logistic_cdf( 1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7)) + 1.0 * log_odds(uheight.min(dmax).max(dmin)), ); // marine: ε₀ = 2.078e-3 // San Gabriel Mountains: ε₀ = 3.18e-4 // Oregon Coast Range: ε₀ = 2.68e-4 // Frogs Hollow (peak production = 0.25): ε₀ = 1.41e-4 // Point Reyes: ε₀ = 8.1e-5 // Nunnock River (fractured granite, least weathered?): ε₀ = 5.3e-5 // The stronger the rock, the lower the production rate of exposed bedrock. // divide by height scale, then multiplied by time_scale, cancels out. let epsilon_0_i = // ((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32 ((1.0 - ustrength) * (/*3.18e-4*/2.078e-3 - 5.3e-5) + 5.3e-5) as f32 / 4.0 ; /* * time_scale*/ // 0.0 ; epsilon_0_i * epsilon_0_scale_i }; let alpha_func = |posi| { // height_scale is roughly [using Hack's Law with b = 2 and SPL without debris flow or // hillslopes] equal to the ratio of the old to new area, to the power of -n_i. // the old height * height scale, and we take the rate as ε₀ * e^(-αH), to keep // the rate of rate of change in soil production consistent we must divide H by // height_scale. // // αH = α(H' * height_scale) = α'H' // α = α' / height_scale let alpha_scale_i = alpha_scale(n_func(posi)); if is_ocean_fn(posi) { // marine: α = 3.7e-2 return 3.7e-2 * alpha_scale_i; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); // let turb = Vec2::zero(); let turb_wposf = wposf + turb; let turb_wposi = turb_wposf .map2(TerrainChunkSize::RECT_SIZE, |e, f| e / f as f64) .map2(WORLD_SIZE, |e, f| (e as i32).max(f as i32 - 1).min(0)); let turb_posi = vec2_as_uniform_idx(turb_wposi); let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); /* let n_i = n_func(posi); let height_scale = height_scale(n_i); let uheight = uheight / height_scale; */ let wposf3 = Vec3::new( wposf.x, wposf.y, uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor, ); let rock_strength = gen_ctx .rock_strength_nz .get(wposf3.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); let center = /*0.25*/0.4; let dmin = center - /*0.15;//0.05*/0.05; let dmax = center + /*0.05*//*0.10*/0.05; //0.05; let log_odds = |x: f64| logit(x) - logit(center); let ustrength = logistic_cdf( 1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7)) + 1.0 * log_odds(uheight.min(dmax).max(dmin)), ); // Frog Hollow (peak production = 0.25): α = 4.2e-2 // San Gabriel Mountains: α = 3.8e-2 // marine: α = 3.7e-2 // Oregon Coast Range: α = 3e-2 // Nunnock river (fractured granite, least weathered?): α = 2e-3 // Point Reyes: α = 1.6e-2 // The stronger the rock, the faster the decline in soil production. let alpha_i = (ustrength * (4.2e-2 - 1.6e-2) + 1.6e-2) as f32; alpha_i * alpha_scale_i }; let uplift_fn = |posi| { if is_ocean_fn(posi) { /* return 1e-2 .mul(max_erosion_per_delta_t) as f32; */ return 0.0; } let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let alt_main = { // Extension upwards from the base. A positive number from 0 to 1 curved to be // maximal at 0. Also to be multiplied by CONFIG.mountain_scale. let alt_main = (gen_ctx .alt_nz .get((wposf.div(2_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .powf(1.35); fn spring(x: f64, pow: f64) -> f64 { x.abs().powf(pow) * x.signum() } (0.0 + alt_main + (gen_ctx .small_nz .get((wposf.div(300.0)).into_array()) .min(1.0) .max(-1.0)) .mul(alt_main.powf(0.8).max(/*0.25*/ 0.15)) .mul(0.3) .add(1.0) .mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0) .mul(0.045)*/) }; let height = ((/*old_height_uniform*/uplift_uniform[posi]./*0*/1 - alt_old_min_uniform) as f64 / (alt_old_max_uniform - alt_old_min_uniform) as f64) /*((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64)*/ ; let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon); /*.max(1e-7 / CONFIG.mountain_scale as f64) .min(1.0f64 - 1e-7);*/ /* let alt_main = { // Extension upwards from the base. A positive number from 0 to 1 curved to be // maximal at 0. Also to be multiplied by CONFIG.mountain_scale. let alt_main = (gen_ctx .alt_nz .get((wposf.div(2_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .powf(1.35); fn spring(x: f64, pow: f64) -> f64 { x.abs().powf(pow) * x.signum() } (0.0 + alt_main + (gen_ctx .small_nz .get((wposf.div(300.0)).into_array()) .min(1.0) .max(-1.0)) .mul(alt_main.powf(0.8).max(/*0.25*/ 0.15)) .mul(0.3) .add(1.0) .mul(0.4) + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045)) }; */ // let height = height + (alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low)); let height = erosion_factor(height); assert!(height >= 0.0); assert!(height <= 1.0); // assert!(alt_main >= 0.0); let (bump_factor, bump_max) = if /*height < f32::EPSILON as f64 * 0.5*//*false*/ /*true*/ false { ( /*(alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64*/ (alt_main / CONFIG.mountain_scale as f64 * 128.0).mul(0.1).powf(1.2) * /*(1.0 / CONFIG.mountain_scale as f64)*/(f32::EPSILON * 0.5) as f64, (f32::EPSILON * 0.5) as f64, ) } else { (0.0, 0.0) }; // tan(6/360*2*pi)*32 ~ 3.4 // 3.4/32*512 ~ 54 // 18/32*512 ~ 288 // tan(pi/6)*32 ~ 18 // tan(54/360*2*pi)*32 // let height = 1.0f64; let turb_wposf = wposf .div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64)) .div(turb_wposf_div); let turb = Vec2::new( gen_ctx.turb_x_nz.get(turb_wposf.into_array()), gen_ctx.turb_y_nz.get(turb_wposf.into_array()), ) * uplift_turb_scale * TerrainChunkSize::RECT_SIZE.map(|e| e as f64); let turb_wposf = wposf + turb; let uheight = gen_ctx .uplift_nz .get(turb_wposf.into_array()) /* .min(0.5) .max(-0.5)*/ .min(1.0) .max(-1.0) .mul(0.5) .add(0.5); // u = 1e-3: normal-high (dike, mountain) // u = 5e-4: normal (mid example in Yuan, average mountain uplift) // u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05). // u = 0: low (plateau [fan, altitude = 0.0]) // let height = uheight; // let height = 1.0f64; // let height = 1.0 / 7.0f64; // let height = 0.0 / 31.0f64; let bfrac = /*erosion_factor(0.5);*/0.0; let height = (height - bfrac).abs().div(1.0 - bfrac); let height = height /* .mul(31.0 / 32.0) .add(1.0 / 32.0) */ /* .mul(15.0 / 16.0) .add(1.0 / 16.0) */ /* .mul(5.0 / 8.0) .add(3.0 / 8.0) */ /* .mul(6.0 / 8.0) .add(2.0 / 8.0) */ /* .mul(7.0 / 8.0) .add(1.0 / 8.0) */ .mul(max_erosion_per_delta_t) .sub(/*1.0 / CONFIG.mountain_scale as f64*/ bump_max) .add(bump_factor); /* .sub(/*1.0 / CONFIG.mountain_scale as f64*/(f32::EPSILON * 0.5) as f64) .add(bump_factor); */ height as f64 }; let alt_func = |posi| { if is_ocean_fn(posi) { // -max_erosion_per_delta_t as f32 // -1.0 / CONFIG.mountain_scale // -0.75 // -CONFIG.sea_level / CONFIG.mountain_scale // 0.0 // 0.0 old_height(posi) // 0.0 } else { // uplift_fn(posi) let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)) .map(|e| e as f64); let alt_main = { // Extension upwards from the base. A positive number from 0 to 1 curved to be // maximal at 0. Also to be multiplied by CONFIG.mountain_scale. let alt_main = (gen_ctx .alt_nz .get((wposf.div(2_000.0)).into_array()) .min(1.0) .max(-1.0)) .abs() .powf(1.35); fn spring(x: f64, pow: f64) -> f64 { x.abs().powf(pow) * x.signum() } (0.0 + alt_main + (gen_ctx .small_nz .get((wposf.div(300.0)).into_array()) .min(1.0) .max(-1.0)) .mul(alt_main.powf(0.8).max(/*0.25*/ 0.15)) .mul(0.3) .add(1.0) .mul(0.4)/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0) .mul(0.045)*/) }; // (kf_func(posi) / 1.5e-4 * CONFIG.mountain_scale as f64) as f32 // (old_height_uniform(posi) as f64 * CONFIG.mountain_scale as f64) as f32 // (old_height_uniform(posi) as f64 * CONFIG.mountain_scale as f64) as f32 // (uplift_fn(posi) * CONFIG.mountain_scale as f64) as f32 // (old_height_uniform(posi) - 0.5)/* * max_erosion_per_delta_t as f32*/ (old_height(posi) as f64 / CONFIG.mountain_scale as f64) as f32 - 0.5 // ((((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) - 0.25) * (CONFIG.mountain_scale as f64)) as f32 // old_height(posi)/* * max_erosion_per_delta_t as f32*/ // uplift_fn(posi) * (CONFIG.mountain_scale / max_erosion_per_delta_t as f32) // 0.0 // /*-CONFIG.mountain_scale * 0.5 + *//*-CONFIG.mountain_scale/* * 0.75*/ + */(old_height_uniform(posi)/*.powf(2.0)*/ - 0.5)/* * CONFIG.mountain_scale as f32*/ // uplift_fn(posi) * (CONFIG.mountain_scale / max_erosion_per_delta_t as f32) // 0.0 /* // 0.0 // -/*CONFIG.sea_level / CONFIG.mountain_scale*//* 0.75 */1.0 // ((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) as f32 // uplift_fn(posi) / max_erosion_per_delta_t as f32 // old_height_uniform(posi) * (/*((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) **/(((6.0 / 360.0 * 2.0 * f64::consts::PI).tan() * TerrainChunkSize::RECT_SIZE.reduce_partial_min() as f64) .floor() * height_scale)) as f32 // 5.0 / CONFIG.mountain_scale */ } }; /* // FIXME: Remove. let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|i| map_edge_factor(i) == 0.0) .collect::>(); let is_ocean_fn = |posi: usize| is_ocean[posi]; */ // Parse out the contents of various map formats into the values we need. let parsed_world_file = (|| { let map = match opts.world_file { FileOpts::LoadLegacy(ref path) => { let file = match File::open(path) { Ok(file) => file, Err(err) => { log::warn!("Couldn't read path for maps: {:?}", err); return None; } }; let reader = BufReader::new(file); let map: WorldFileLegacy = match bincode::deserialize_from(reader) { Ok(map) => map, Err(err) => { log::warn!("Couldn't parse legacy map: {:?}). Maybe you meant to try a regular load?", err); return None; } }; map.into_modern() } FileOpts::Load(ref path) => { let file = match File::open(path) { Ok(file) => file, Err(err) => { log::warn!("Couldn't read path for maps: {:?}", err); return None; } }; let reader = BufReader::new(file); let map: WorldFile = match bincode::deserialize_from(reader) { Ok(map) => map, Err(err) => { log::warn!("Couldn't parse modern map: {:?}). Maybe you meant to try a legacy load?", err); return None; } }; map.into_modern() } FileOpts::LoadAsset(ref specifier) => { let reader = match assets::load_file(specifier, &["bin"]) { Ok(reader) => reader, Err(err) => { log::warn!( "Couldn't read asset specifier {:?} for maps: {:?}", specifier, err ); return None; } }; let map: WorldFile = match bincode::deserialize_from(reader) { Ok(map) => map, Err(err) => { log::warn!("Couldn't parse modern map: {:?}). Maybe you meant to try a legacy load?", err); return None; } }; map.into_modern() } FileOpts::Generate | FileOpts::Save => return None, }; match map { Ok(map) => Some(map), Err(e) => { match e { WorldFileError::WorldSizeInvalid => { log::warn!("World size of map is invalid."); } } None } } })(); let (alt, basement /*, alluvium*/) = if let Some(map) = parsed_world_file { // let map_len = map.alt.len(); ( map.alt, map.basement, /* vec![0.0; map_len].into_boxed_slice() */ ) } else { let (alt, basement /*, alluvium*/) = do_erosion( 0.0, max_erosion_per_delta_t as f32, n_steps, &river_seed, // varying conditions &rock_strength_nz, // initial conditions |posi| alt_func(posi), // + if is_ocean_fn(posi) { 0.0 } else { 128.0 }, |posi| { alt_func(posi) - if is_ocean_fn(posi) { 0.0 } else { /*1400.0*//*CONFIG.mountain_scale * 0.75*/ 0.0 } }, // if is_ocean_fn(posi) { old_height(posi) } else { 0.0 }, // |posi| 0.0, is_ocean_fn, // empirical constants uplift_fn, |posi| n_func(posi), |posi| theta_func(posi), |posi| kf_func(posi), |posi| kd_func(posi), |posi| g_func(posi), |posi| epsilon_0_func(posi), |posi| alpha_func(posi), // scaling factors |n| height_scale(n), k_d_scale(n_approx), |q| k_da_scale(q), ); // Quick "small scale" erosion cycle in order to lower extreme angles. do_erosion( 0.0, (1.0/* * height_scale*/) as f32, n_small_steps, &river_seed, &rock_strength_nz, |posi| /* if is_ocean_fn(posi) { old_height(posi) } else { alt[posi] } *//*alt[posi] as f32*/(alt[posi]/* + alluvium[posi]*/) as f32, |posi| basement[posi] as f32, // |posi| /*alluvium[posi] as f32*/0.0f32, is_ocean_fn, |posi| uplift_fn(posi) * (1.0/* * height_scale*/ / max_erosion_per_delta_t), |posi| n_func(posi), |posi| theta_func(posi), |posi| kf_func(posi), |posi| kd_func(posi), |posi| g_func(posi), |posi| epsilon_0_func(posi), |posi| alpha_func(posi), |n| height_scale(n), k_d_scale(n_approx), |q| k_da_scale(q), ) }; // Save map, if necessary. // NOTE: We wll always save a map with latest version. let map = WorldFile::new(ModernMap { alt, basement }); (|| { if let FileOpts::Save = opts.world_file { use std::time::SystemTime; // Check if folder exists and create it if it does not let mut path = PathBuf::from("./maps"); if !path.exists() { if let Err(err) = std::fs::create_dir(&path) { log::warn!("Couldn't create folder for map: {:?}", err); return; } } path.push(format!( // TODO: Work out a nice bincode file extension. "map_{}.bin", SystemTime::now() .duration_since(SystemTime::UNIX_EPOCH) .map(|d| d.as_millis()) .unwrap_or(0) )); let file = match File::create(path) { Ok(file) => file, Err(err) => { log::warn!("Couldn't create file for maps: {:?}", err); return; } }; let writer = BufWriter::new(file); if let Err(err) = bincode::serialize_into(writer, &map) { log::warn!("Couldn't write map: {:?}", err); } } })(); // Skip validation--we just performed a no-op conversion for this map, so it had better be // valid! let ModernMap { alt, basement } = map.into_modern().unwrap(); // Additional small-scale eroson after map load, only used during testing. let (alt, basement /*, alluvium*/) = if n_post_load_steps == 0 { (alt, basement /*, alluvium*/) } else { do_erosion( 0.0, (1.0/* * height_scale*/) as f32, n_post_load_steps, &river_seed, &rock_strength_nz, |posi| /* if is_ocean_fn(posi) { old_height(posi) } else { alt[posi] } */alt[posi] as f32, |posi| basement[posi] as f32, // |posi| alluvium[posi] as f32, is_ocean_fn, |posi| uplift_fn(posi) * (1.0/* * height_scale*/ / max_erosion_per_delta_t), |posi| n_func(posi), |posi| theta_func(posi), |posi| kf_func(posi), |posi| kd_func(posi), |posi| g_func(posi), |posi| epsilon_0_func(posi), |posi| alpha_func(posi), |n| height_scale(n), k_d_scale(n_approx), |q| k_da_scale(q), ) }; let is_ocean = get_oceans(|posi| alt[posi]); let is_ocean_fn = |posi: usize| is_ocean[posi]; let mut dh = downhill( |posi| alt[posi], /*&alt*/ /*old_height*/ is_ocean_fn, ); let (boundary_len, indirection, water_alt_pos, maxh) = get_lakes(/*&/*water_alt*/alt*/ |posi| alt[posi], &mut dh); log::debug!("Max height: {:?}", maxh); let (mrec, mstack, mwrec) = { let mut wh = vec![0.0; WORLD_SIZE.x * WORLD_SIZE.y]; get_multi_rec( |posi| alt[posi], &dh, &water_alt_pos, &mut wh, WORLD_SIZE.x, WORLD_SIZE.y, TerrainChunkSize::RECT_SIZE.x as Compute, TerrainChunkSize::RECT_SIZE.y as Compute, maxh, ) }; let flux_old = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len); let flux_rivers = get_drainage(&water_alt_pos, &dh, boundary_len); // let flux_rivers = flux_old.clone(); let water_height_initial = |chunk_idx| { let indirection_idx = indirection[chunk_idx]; // Find the lake this point is flowing into. let lake_idx = if indirection_idx < 0 { chunk_idx } else { indirection_idx as usize }; /* // Find the pass this lake is flowing into (i.e. water at the lake bottom gets // pushed towards the point identified by pass_idx). let neighbor_pass_idx = dh[lake_idx]; */ let chunk_water_alt = if /*neighbor_pass_idx*/ dh[lake_idx] < 0 { // This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level) // or part of a lake that flows directly into the ocean. In the former case, water // is at sea level so we just return 0.0. In the latter case, the lake bottom must // have been a boundary node in the first place--meaning this node flows directly // into the ocean. In that case, its lake bottom is ocean, meaning its water is // also at sea level. Thus, we return 0.0 in both cases. 0.0 } else { // This chunk is draining into a body of water that isn't the ocean (i.e., a lake). // Then we just need to find the pass height of the surrounding lake in order to // figure out the initial water height (which fill_sinks will then extend to make // sure it fills the entire basin). // Find the height of "our" side of the pass (the part of it that drains into this // chunk's lake). let pass_idx = -indirection[lake_idx] as usize; let pass_height_i = alt[pass_idx]; // Find the pass this lake is flowing into (i.e. water at the lake bottom gets // pushed towards the point identified by pass_idx). let neighbor_pass_idx = dh[pass_idx/*lake_idx*/]; // Find the height of the pass into which our lake is flowing. let pass_height_j = alt[neighbor_pass_idx as usize]; // Find the maximum of these two heights. let pass_height = pass_height_i.max(pass_height_j); // Use the pass height as the initial water altitude. pass_height }; // Use the maximum of the pass height and chunk height as the parameter to fill_sinks. let chunk_alt = alt[chunk_idx]; chunk_alt.max(chunk_water_alt) }; let water_alt = fill_sinks(water_height_initial, is_ocean_fn); /* let water_alt = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|posi| water_height_initial(posi)) .collect::>(); */ let rivers = get_rivers(&water_alt_pos, &water_alt, &dh, &indirection, &flux_rivers); let water_alt = indirection .par_iter() .enumerate() .map(|(chunk_idx, &indirection_idx)| { // Find the lake this point is flowing into. let lake_idx = if indirection_idx < 0 { chunk_idx } else { indirection_idx as usize }; /* // Find the pass this lake is flowing into (i.e. water at the lake bottom gets // pushed towards the point identified by pass_idx). let neighbor_pass_idx = dh[lake_idx]; */ if /*neighbor_pass_idx*/ dh[lake_idx] < 0 { // This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level) // or part of a lake that flows directly into the ocean. In the former case, water // is at sea level so we just return 0.0. In the latter case, the lake bottom must // have been a boundary node in the first place--meaning this node flows directly // into the ocean. In that case, its lake bottom is ocean, meaning its water is // also at sea level. Thus, we return 0.0 in both cases. 0.0 } else { // This is not flowing into the ocean, so we can use the existing water_alt. water_alt[chunk_idx] as f32 } }) .collect::>() .into_boxed_slice(); let is_underwater = |chunk_idx: usize| match rivers[chunk_idx].river_kind { Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true, Some(RiverKind::River { .. }) => false, // TODO: inspect width None => false, }; // Check whether any tiles around this tile are not water (since Lerp will ensure that they // are included). let pure_water = |posi: usize| { /* let river_data = &rivers[posi]; match river_data.river_kind { Some(RiverKind::Lake { .. }) => { // Lakes are always completely submerged. return true; }, /* Some(RiverKind::River { cross_section }) if cross_section.x >= TerrainChunkSize::RECT_SIZE.x as f32 => { // Rivers that are wide enough are considered completely submerged (not a // completely fair approximation). return true; }, */ _ => {} } */ let pos = uniform_idx_as_vec2(posi); for x in pos.x - 1..(pos.x + 1) + 1 { for y in pos.y - 1..(pos.y + 1) + 1 { if x >= 0 && y >= 0 && x < WORLD_SIZE.x as i32 && y < WORLD_SIZE.y as i32 { let posi = vec2_as_uniform_idx(Vec2::new(x, y)); if !is_underwater(posi) { return false; } } } } true }; // NaNs in these uniform vectors wherever pure_water() returns true. let (((alt_no_water, _), (pure_flux, _)), ((temp_base, _), (humid_base, _))) = rayon::join( || { rayon::join( || { uniform_noise(|posi, _| { if pure_water(posi) { None } else { // A version of alt that is uniform over *non-water* (or land-adjacent water) // chunks. Some(alt[posi] as f32) } }) }, || { uniform_noise(|posi, _| { if pure_water(posi) { None } else { Some(flux_old[posi]) } }) }, ) }, || { rayon::join( || { uniform_noise(|posi, wposf| { if pure_water(posi) { None } else { // -1 to 1. Some(gen_ctx.temp_nz.get((wposf/*.div(12000.0)*/).into_array()) as f32) } }) }, || { uniform_noise(|posi, wposf| { // Check whether any tiles around this tile are water. if pure_water(posi) { None } else { // 0 to 1, hopefully. Some( (gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32) .add(1.0) .mul(0.5), ) } }) }, ) }, ); let gen_cdf = GenCdf { humid_base, temp_base, chaos, alt, basement, water_alt, dh, flux: flux_old, pure_flux, alt_no_water, rivers, }; let chunks = (0..WORLD_SIZE.x * WORLD_SIZE.y) .into_par_iter() .map(|i| SimChunk::generate(i, &gen_ctx, &gen_cdf)) .collect::>(); let mut this = Self { seed: seed, chunks, locations: Vec::new(), gen_ctx, rng, }; if opts.seed_elements { this.seed_elements(); } this } /// Draw a map of the world based on chunk information. Returns a buffer of u32s. pub fn get_map(&self) -> Vec { let mut v = vec![0u32; WORLD_SIZE.x * WORLD_SIZE.y]; // TODO: Parallelize again. MapConfig::default().generate(&self, |pos, (r, g, b, a)| { v[pos.y * WORLD_SIZE.x + pos.x] = u32::from_le_bytes([r, g, b, a]); }); v } /// Prepare the world for simulation pub fn seed_elements(&mut self) { let mut rng = self.rng.clone(); let cell_size = 16; let grid_size = WORLD_SIZE / cell_size; let loc_count = 100; let mut loc_grid = vec![None; grid_size.product()]; let mut locations = Vec::new(); // Seed the world with some locations (0..loc_count).for_each(|_| { let cell_pos = Vec2::new( self.rng.gen::() % grid_size.x, self.rng.gen::() % grid_size.y, ); let wpos = (cell_pos * cell_size + cell_size / 2) .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as i32 * sz as i32 + sz as i32 / 2 }); locations.push(Location::generate(wpos, &mut rng)); loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1); }); // Find neighbours let mut loc_clone = locations .iter() .map(|l| l.center) .enumerate() .collect::>(); (0..locations.len()).for_each(|i| { let pos = locations[i].center.map(|e| e as i64); loc_clone.sort_by_key(|(_, l)| l.map(|e| e as i64).distance_squared(pos)); loc_clone.iter().skip(1).take(2).for_each(|(j, _)| { locations[i].neighbours.insert(*j); locations[*j].neighbours.insert(i); }); }); // Simulate invasion! let invasion_cycles = 25; (0..invasion_cycles).for_each(|_| { (0..grid_size.y).for_each(|j| { (0..grid_size.x).for_each(|i| { if loc_grid[j * grid_size.x + i].is_none() { const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1]; let idx = self.rng.gen::() % 4; let new_i = i as i32 + R_COORDS[idx]; let new_j = j as i32 + R_COORDS[idx + 1]; if new_i >= 0 && new_j >= 0 { let loc = Vec2::new(new_i as usize, new_j as usize); loc_grid[j * grid_size.x + i] = loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten(); } } }); }); }); // Place the locations onto the world let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2); self.chunks .par_iter_mut() .enumerate() .for_each(|(ij, chunk)| { let chunk_pos = uniform_idx_as_vec2(ij); let i = chunk_pos.x as usize; let j = chunk_pos.y as usize; let block_pos = Vec2::new( chunk_pos.x * TerrainChunkSize::RECT_SIZE.x as i32, chunk_pos.y * TerrainChunkSize::RECT_SIZE.y as i32, ); let _cell_pos = Vec2::new(i / cell_size, j / cell_size); // Find the distance to each region let near = gen.get(chunk_pos); let mut near = near .iter() .map(|(pos, seed)| RegionInfo { chunk_pos: *pos, block_pos: pos .map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e * sz as i32), dist: (pos - chunk_pos).map(|e| e as f32).magnitude(), seed: *seed, }) .collect::>(); // Sort regions based on distance near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap()); let nearest_cell_pos = near[0].chunk_pos; if nearest_cell_pos.x >= 0 && nearest_cell_pos.y >= 0 { let nearest_cell_pos = nearest_cell_pos.map(|e| e as usize) / cell_size; chunk.location = loc_grid .get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x) .cloned() .unwrap_or(None) .map(|loc_idx| LocationInfo { loc_idx, near }); let town_size = 200; let in_town = chunk .location .as_ref() .map(|l| { locations[l.loc_idx] .center .map(|e| e as i64) .distance_squared(block_pos.map(|e| e as i64)) < town_size * town_size }) .unwrap_or(false); if in_town { chunk.spawn_rate = 0.0; } } }); // Stage 2 - towns! let chunk_idx_center = |e: Vec2| { e.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e * sz as i32 + sz as i32 / 2 }) }; let maybe_towns = self .gen_ctx .town_gen .par_iter( chunk_idx_center(Vec2::zero()), chunk_idx_center(WORLD_SIZE.map(|e| e as i32)), ) .map_init( || Box::new(BlockGen::new(ColumnGen::new(self))), |mut block_gen, (pos, seed)| { let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed)); // println!("Town: {:?}", town); TownState::generate(pos, &mut block_gen, &mut rng).map(|t| (pos, Arc::new(t))) }, ) .filter_map(|x| x) .collect::>(); let gen_ctx = &self.gen_ctx; self.chunks .par_iter_mut() .enumerate() .for_each(|(ij, chunk)| { let chunk_pos = uniform_idx_as_vec2(ij); let wpos = chunk_idx_center(chunk_pos); let near_towns = gen_ctx.town_gen.get(wpos); let town = near_towns .iter() .min_by_key(|(pos, _seed)| wpos.distance_squared(*pos)); let maybe_town = town .and_then(|(pos, _seed)| maybe_towns.get(pos)) // Only care if we're close to the town .filter(|town| { Vec2::from(town.center()).distance_squared(wpos) < town.radius().add(64).pow(2) }) .cloned(); chunk.structures.town = maybe_town; }); self.rng = rng; self.locations = locations; } pub fn get(&self, chunk_pos: Vec2) -> Option<&SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&self.chunks[vec2_as_uniform_idx(chunk_pos)]) } else { None } } pub fn get_wpos(&self, wpos: Vec2) -> Option<&SimChunk> { self.get( wpos.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| { e / sz as i32 }), ) } pub fn get_mut(&mut self, chunk_pos: Vec2) -> Option<&mut SimChunk> { if chunk_pos .map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32) .reduce_and() { Some(&mut self.chunks[vec2_as_uniform_idx(chunk_pos)]) } else { None } } pub fn get_base_z(&self, chunk_pos: Vec2) -> Option { if !chunk_pos .map2(WORLD_SIZE, |e, sz| e > 0 && e < sz as i32 - 2) .reduce_and() { return None; } let chunk_idx = vec2_as_uniform_idx(chunk_pos); local_cells(chunk_idx) .flat_map(|neighbor_idx| { let neighbor_pos = uniform_idx_as_vec2(neighbor_idx); let neighbor_chunk = self.get(neighbor_pos); let river_kind = neighbor_chunk.and_then(|c| c.river.river_kind); let has_water = river_kind.is_some() && river_kind != Some(RiverKind::Ocean); if (neighbor_pos - chunk_pos).reduce_partial_max() <= 1 || has_water { neighbor_chunk.map(|c| c.get_base_z()) } else { None } }) .fold(None, |a: Option, x| a.map(|a| a.min(x)).or(Some(x))) } pub fn get_interpolated(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Add + Mul, F: FnMut(&SimChunk) -> T, { let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { let x2 = x * x; // Catmull-Rom splines let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5; let co1 = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } /// M. Steffen splines. /// /// A more expensive cubic interpolation function that can preserve monotonicity between /// points. This is useful if you rely on relative differences between endpoints being /// preserved at all interior points. For example, we use this with riverbeds (and water /// height on along rivers) to maintain the invariant that the rivers always flow downhill at /// interior points (not just endpoints), without needing to flatten out the river. pub fn get_interpolated_monotone(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Signed + Float + Add + Mul, F: FnMut(&SimChunk) -> T, { // See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf // // Note that these are only guaranteed monotone in one dimension; fortunately, that is // sufficient for our purposes. let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); let secant = |b: T, c: T| c - b; let parabola = |a: T, c: T| -a * 0.5 + c * 0.5; let slope = |_a: T, _b: T, _c: T, s_a: T, s_b: T, p_b: T| { // ((b - a).signum() + (c - b).signum()) * s (s_a.signum() + s_b.signum()) * (s_a.abs().min(s_b.abs()).min(p_b.abs() * 0.5)) }; let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { // Compute secants. let s_a = secant(a, b); let s_b = secant(b, c); let s_c = secant(c, d); // Computing slopes from parabolas. let p_b = parabola(a, c); let p_c = parabola(b, d); // Get slopes (setting distance between neighbors to 1.0). let slope_b = slope(a, b, c, s_a, s_b, p_b); let slope_c = slope(b, c, d, s_b, s_c, p_c); let x2 = x * x; // Interpolating splines. let co0 = slope_b + slope_c - s_b * 2.0; // = a * -0.5 + c * 0.5 + b * -0.5 + d * 0.5 - 2 * (c - b) // = a * -0.5 + b * 1.5 - c * 1.5 + d * 0.5; let co1 = s_b * 3.0 - slope_b * 2.0 - slope_c; // = (3.0 * (c - b) - 2.0 * (a * -0.5 + c * 0.5) - (b * -0.5 + d * 0.5)) // = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = slope_b; // = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut x = [T::default(); 4]; for (x_idx, j) in (-1..3).enumerate() { let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?); let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?); let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?); let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?); x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32); } Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32)) } /// Bilinear interpolation. /// /// Linear interpolation in both directions (i.e. quadratic interpolation). pub fn get_interpolated_bilinear(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Signed + Float + Add + Mul, F: FnMut(&SimChunk) -> T, { // (i) Find downhill for all four points. // (ii) Compute distance from each downhill point and do linear interpolation on their heights. // (iii) Compute distance between each neighboring point and do linear interpolation on // their distance-interpolated heights. // See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf // // Note that these are only guaranteed monotone in one dimension; fortunately, that is // sufficient for our purposes. let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| { e as f64 / sz as f64 }); // Orient the chunk in the direction of the most downhill point of the four. If there is // no "most downhill" point, then we don't care. let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q); let p0 = self.get(x0)?; let y0 = f(p0); let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q); let p1 = self.get(x1)?; let y1 = f(p1); let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q); let p2 = self.get(x2)?; let y2 = f(p2); let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q); let p3 = self.get(x3)?; let y3 = f(p3); let z0 = y0 .mul(1.0 - pos.x.fract() as f32) .mul(1.0 - pos.y.fract() as f32); let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32); let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32); let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32); Some(z0 + z1 + z2 + z3) } } pub struct SimChunk { pub chaos: f32, pub alt: f32, pub basement: f32, pub water_alt: f32, pub downhill: Option>, pub flux: f32, pub temp: f32, pub humidity: f32, pub rockiness: f32, pub is_cliffs: bool, pub near_cliffs: bool, pub tree_density: f32, pub forest_kind: ForestKind, pub spawn_rate: f32, pub location: Option, pub river: RiverData, pub is_underwater: bool, pub structures: Structures, } #[derive(Copy, Clone)] pub struct RegionInfo { pub chunk_pos: Vec2, pub block_pos: Vec2, pub dist: f32, pub seed: u32, } #[derive(Clone)] pub struct LocationInfo { pub loc_idx: usize, pub near: Vec, } #[derive(Clone)] pub struct Structures { pub town: Option>, } impl SimChunk { fn generate(posi: usize, gen_ctx: &GenCtx, gen_cdf: &GenCdf) -> Self { let pos = uniform_idx_as_vec2(posi); let wposf = (pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)).map(|e| e as f64); let _map_edge_factor = map_edge_factor(posi); let (_, chaos) = gen_cdf.chaos[posi]; let alt_pre = gen_cdf.alt[posi] as f32; let basement_pre = gen_cdf.basement[posi] as f32; let water_alt_pre = gen_cdf.water_alt[posi]; let downhill_pre = gen_cdf.dh[posi]; let flux = gen_cdf.flux[posi] as f32; let river = gen_cdf.rivers[posi].clone(); // Can have NaNs in non-uniform part where pure_water returned true. We just test one of // the four in order to find out whether this is the case. let (flux_uniform, /*flux_non_uniform*/ _) = gen_cdf.pure_flux[posi]; let (alt_uniform, _) = gen_cdf.alt_no_water[posi]; let (temp_uniform, _) = gen_cdf.temp_base[posi]; let (humid_uniform, _) = gen_cdf.humid_base[posi]; /* // Vertical difference from the equator (NOTE: "uniform" with much lower granularity than // other uniform quantities, but hopefully this doesn't matter *too* much--if it does, we // can always add a small x component). // // Not clear that we want this yet, let's see. let latitude_uniform = (pos.y as f32 / WORLD_SIZE.y as f32).sub(0.5).mul(2.0); // Even less granular--if this matters we can make the sign affect the quantiy slightly. let abs_lat_uniform = latitude_uniform.abs(); */ // Take the weighted average of our randomly generated base humidity, the scaled // negative altitude, and the calculated water flux over this point in order to compute // humidity. const HUMID_WEIGHTS: [f32; /*3*/2] = [2.0, 1.0/*, 1.0*/]; let humidity = /*if flux_non_uniform.is_nan() { 0.0 } else */{ cdf_irwin_hall( &HUMID_WEIGHTS, [humid_uniform, flux_uniform/*, 1.0 - alt_uniform*/], ) }; // We also correlate temperature negatively with altitude and absolute latitude, using // different weighting than we use for humidity. const TEMP_WEIGHTS: [f32; 2] = [/*1.5, */ 1.0, 2.0]; let temp = /*if flux_non_uniform.is_nan() { 0.0 } else */{ cdf_irwin_hall( &TEMP_WEIGHTS, [ temp_uniform, 1.0 - alt_uniform, /* 1.0 - abs_lat_uniform*/ ], ) } // Convert to [-1, 1] .sub(0.5) .mul(2.0); /* if (temp - (1.0 - alt_uniform).sub(0.5).mul(2.0)).abs() >= 1e-7 { panic!("Halp!"); } */ // let height_scale = 1.0; // 1.0 / CONFIG.mountain_scale; let mut alt = CONFIG.sea_level.add(alt_pre /*.div(height_scale)*/); let mut basement = CONFIG.sea_level.add(basement_pre /*.div(height_scale)*/); let water_alt = CONFIG.sea_level.add(water_alt_pre /*.div(height_scale)*/); let downhill = if downhill_pre == -2 { None } else if downhill_pre < 0 { panic!("Uh... shouldn't this never, ever happen?"); } else { Some( uniform_idx_as_vec2(downhill_pre as usize) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32), ) }; let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2; // Logistic regression. Make sure x ∈ (0, 1). let logit = |x: f64| x.ln() - x.neg().ln_1p(); // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi))) let logistic_2_base = 3.0f64.sqrt().mul(f64::consts::FRAC_2_PI); // Assumes μ = 0, σ = 1 let logistic_cdf = |x: f64| x.div(logistic_2_base).tanh().mul(0.5).add(0.5); let is_underwater = match river.river_kind { Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true, Some(RiverKind::River { .. }) => false, // TODO: inspect width None => false, }; let river_xy = Vec2::new(river.velocity.x, river.velocity.y).magnitude(); let river_slope = river.velocity.z / river_xy; match river.river_kind { Some(RiverKind::River { cross_section }) => { if cross_section.x >= 0.5 && cross_section.y >= CONFIG.river_min_height { /* println!( "Big area! Pos area: {:?}, River data: {:?}, slope: {:?}", wposf, river, river_slope ); */ } if river_slope.abs() >= /*1.0*//*3.0.sqrt() / 3.0*/0.25 && cross_section.x >= 1.0 { log::debug!( "Big waterfall! Pos area: {:?}, River data: {:?}, slope: {:?}", wposf, river, river_slope ); } } Some(RiverKind::Lake { .. }) => { // Forces lakes to be downhill from the land around them, and adds some noise to // the lake bed to make sure it's not too flat. let lake_bottom_nz = (gen_ctx.small_nz.get((wposf.div(20.0)).into_array()) as f32) .max(-1.0) .min(1.0) .mul(3.0); alt = alt.min(water_alt - 5.0) + lake_bottom_nz; } _ => {} } // No trees in the ocean, with zero humidity (currently), or directly on bedrock. let tree_density = if is_underwater /* || alt - basement.min(alt) < 2.0 */ { 0.0 } else { let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array())) .mul(1.5) .add(1.0) .mul(0.5) .mul(1.2 - chaos as f64 * 0.95) .add(0.05) .max(0.0) .min(1.0); // Tree density should go (by a lot) with humidity. if humidity <= 0.0 || tree_density <= 0.0 { 0.0 } else if humidity >= 1.0 || tree_density >= 1.0 { 1.0 } else { // Weighted logit sum. logistic_cdf(logit(humidity as f64) + 0.5 * logit(tree_density)) } // rescale to (-0.95, 0.95) .sub(0.5) .mul(0.95) .add(0.5) } as f32; Self { chaos, flux, alt, basement: basement.min(alt), water_alt, downhill, temp, humidity, rockiness: if true { (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32) .sub(0.1) .mul(1.3) .max(0.0) } else { 0.0 }, is_underwater, is_cliffs: cliff > 0.5 && !is_underwater, near_cliffs: cliff > 0.2, tree_density, forest_kind: if temp > CONFIG.temperate_temp { if temp > CONFIG.desert_temp { if humidity > CONFIG.jungle_hum { // Forests in desert temperatures with extremely high humidity // should probably be different from palm trees, but we use them // for now. ForestKind::Palm } else if humidity > CONFIG.forest_hum { ForestKind::Palm } else if humidity > CONFIG.desert_hum { // Low but not desert humidity, so we should really have some other // terrain... ForestKind::Savannah } else { ForestKind::Savannah } } else if temp > CONFIG.tropical_temp { if humidity > CONFIG.jungle_hum { if tree_density > 0.0 { // println!("Mangrove: {:?}", wposf); } ForestKind::Mangrove } else if humidity > CONFIG.forest_hum { // NOTE: Probably the wrong kind of tree for this climate. ForestKind::Oak } else if humidity > CONFIG.desert_hum { // Low but not desert... need something besides savannah. ForestKind::Savannah } else { ForestKind::Savannah } } else { if humidity > CONFIG.jungle_hum { // Temperate climate with jungle humidity... // https://en.wikipedia.org/wiki/Humid_subtropical_climates are often // densely wooded and full of water. Semitropical rainforests, basically. // For now we just treet them like other rainforests. ForestKind::Oak } else if humidity > CONFIG.forest_hum { // Moderate climate, moderate humidity. ForestKind::Oak } else if humidity > CONFIG.desert_hum { // With moderate temperature and low humidity, we should probably see // something different from savannah, but oh well... ForestKind::Savannah } else { ForestKind::Savannah } } } else { // For now we don't take humidity into account for cold climates (but we really // should!) except that we make sure we only have snow pines when there is snow. if temp <= CONFIG.snow_temp { ForestKind::SnowPine } else if humidity > CONFIG.desert_hum { ForestKind::Pine } else { // Should really have something like tundra. ForestKind::Pine } }, spawn_rate: 1.0, location: None, river, structures: Structures { town: None }, } } pub fn get_base_z(&self) -> f32 { self.alt - self.chaos * 50.0 - 16.0 } pub fn get_name(&self, world: &WorldSim) -> Option { if let Some(loc) = &self.location { Some(world.locations[loc.loc_idx].name().to_string()) } else { None } } pub fn get_biome(&self) -> BiomeKind { if self.alt < CONFIG.sea_level { BiomeKind::Ocean } else if self.chaos > 0.6 { BiomeKind::Mountain } else if self.temp > CONFIG.desert_temp { BiomeKind::Desert } else if self.temp < CONFIG.snow_temp { BiomeKind::Snowlands } else if self.tree_density > 0.65 { BiomeKind::Forest } else { BiomeKind::Grassland } } }