#version 330 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif // #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_VOXEL #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_LOD_FULL_INFO #include #include #include in vec3 f_pos; in vec3 f_norm; in float pull_down; // in vec2 v_pos_orig; // in vec4 f_shadow; // in vec4 f_square; out vec4 tgt_color; /// const vec4 sun_pos = vec4(0); // const vec4 light_pos[2] = vec4[](vec4(0), vec4(0)/*, vec3(00), vec3(0), vec3(0), vec3(0)*/); #include void main() { // tgt_color = vec4(vec3(1.0), 1.0); // return; // vec3 f_pos = lod_pos(f_pos.xy); // vec3 f_col = lod_col(f_pos.xy); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); float my_alt = /*f_pos.z;*/alt_at_real(f_pos.xy); // vec3 f_pos = vec3(f_pos.xy, max(my_alt, f_pos.z)); /* gl_Position = proj_mat * view_mat * vec4(f_pos, 1); gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); */ vec3 my_pos = vec3(f_pos.xy, my_alt); vec3 my_norm = lod_norm(f_pos.xy/*, f_square*/); float which_norm = dot(my_norm, normalize(cam_pos.xyz - my_pos)); // which_norm = 0.5 + which_norm * 0.5; // which_norm = pow(max(0.0, which_norm), /*0.03125*/1 / 8.0);// * 0.5; // smoothstep which_norm = which_norm * which_norm * (3 - 2 * abs(which_norm)); // which_norm = mix(0.0, 1.0, which_norm > 0.0); // vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); vec3 f_norm = mix(faceforward(f_norm, cam_pos.xyz - f_pos, -f_norm), my_norm, which_norm); vec3 f_pos = mix(f_pos, my_pos, which_norm); // vec3 fract_pos = fract(f_pos); /* if (length(f_pos - cam_pos.xyz) <= view_distance.x + 32.0) { vec4 new_f_pos; float depth = 10000000.0; vec4 old_coord = all_mat * vec4(f_pos.xyz, 1.0); for (int i = 0; i < 6; i ++) { // vec4 square = focus_pos.xy + vec4(splay(pos - vec2(1.0, 1.0), splay(pos + vec2(1.0, 1.0)))); vec3 my_f_norm = normals[i]; vec3 my_f_tan = normals[(i + 2) % 6]; vec3 my_f_bitan = normals[(i + 4) % 6]; mat4 foo = mat4(vec4(my_f_tan, 0), vec4(my_f_bitan, 0), vec4(my_f_norm, 0), vec4(0, 0, 0, 1)); mat4 invfoo = foo * inverse(foo * all_mat); vec4 my_f_pos = invfoo * (old_coord);//vec4(f_pos, 1.0); vec4 my_f_proj = all_mat * my_f_pos; if (my_f_proj.z <= depth) { new_f_pos = my_f_pos; f_norm = my_f_norm; depth = my_f_proj.z; } } // f_pos = new_f_pos.xyz; } */ // Test for distance to all 6 sides of the enclosing cube. // if (/*any(lessThan(fract(f_pos.xy), 0.01))*/fract_pos.x <= 0.1) { // f_norm = faceforward(vec3(-1, 0, 0), f_norm, vec3(1, 0, 0)); // f_tan = vec3(0, 1, 0); // } else if (fract_pos.y <= 0.1) { // f_norm = faceforward(vec3(0, -1, 0), f_norm, vec3(0, 1, 0)); // f_tan = vec3(0, 0, 1); // } else { // f_norm = faceforward(vec3(0, 0, -1), f_norm, vec3(0, 0, 1)); // f_tan = vec3(1, 0, 0); // } // vec3 f_bitan = cross(f_norm, f_tan); // mat4 foo = mat4(vec4(f_tan, 0), vec4(f_bitan, 0), vec4(f_norm, 0), vec4(0, 0, 0, 1)); // mat4 invfoo = foo * inverse(foo * all_mat); // vec3 old_coord = all_mat * vec4(f_pos.xyz, 1.0); // vec4 new_f_pos = invfoo * (old_coord);//vec4(f_pos, 1.0); vec3 f_col_raw = mix(lod_col(f_pos.xy), vec3(0), clamp(pull_down / 10, 0, 1)); // tgt_color = vec4(f_col, 1.0); // return; // vec3 f_col = srgb_to_linear(vec3(1.0)); // vec3 f_norm = faceforward(f_norm, cam_pos.xyz - f_pos, -f_norm); // vec3 f_up = faceforward(cam_pos.xyz - f_pos, vec3(0.0, 0.0, -1.0), cam_pos.xyz - f_pos); // vec3 f_norm = faceforward(f_norm, /*vec3(cam_pos.xyz - f_pos.xyz)*/vec3(0.0, 0.0, -1.0), f_norm); // const vec3 normals[3] = vec3[](vec3(1,0,0), vec3(0,1,0), vec3(0,0,1));//, vec3(-1,0,0), vec3(0,-1,0), vec3(0,0,-1)); // const mat3 side_norms = vec3(1, 0, 0), vec3(0, 1, 0), vec3(0, 0, 1); // mat3 sides = mat3( // /*vec3(1, 0, 0), // vec3(0, 1, 0), // vec3(0, 0, 1)*/ // vec3(1, 0, 0), // // faceforward(vec3(1, 0, 0), -f_norm, vec3(1, 0, 0)), // vec3(0, 1, 0), // // faceforward(vec3(0, 1, 0), -f_norm, vec3(0, 1, 0)), // vec3(0, 0, 1) // // faceforward(vec3(0, 0, 1), -f_norm, vec3(0, 0, 1)) // ); // This vector is shorthand for a diagonal matrix, which works because: // (1) our voxel normal vectors are exactly the basis vectors in worldspace; // (2) only 3 of them can be in the direction of the actual normal anyway. // (NOTE: This normal should always be pointing up, so implicitly sides.z = 1.0). // vec3 sides = sign(f_norm); // // NOTE: Should really be sides * f_norm, i.e. abs(f_norm), but voxel_norm would then re-multiply by sides so it cancels out. // vec3 cos_sides_i = sides * f_norm; // vec3 cos_sides_o = sides * view_dir; // // vec3 side_factor_i = cos_sides_i; // // vec3 side_factor_i = f_norm; // // vec3 side_factor_i = cos_sides_o; // vec3 side_factor_i = 1.0 - pow(1.0 - 0.5 * cos_sides_i, vec3(5)); // // vec3 side_factor_i = /*abs*/sign(f_norm) * cos_sides_i;//max(cos_sides_i, 0.0);// 1.0 - pow(1.0 - 0.5 * cos_sides_i, vec3(5.0)); // max(sides * f_norm, vec3(0.0));// // // vec3 side_factor_i = /*abs*/sign(f_norm) * cos_sides_i;//max(cos_sides_i, 0.0);// 1.0 - pow(1.0 - 0.5 * cos_sides_i, vec3(5.0)); // max(sides * f_norm, vec3(0.0));// // // vec3 side_factor_o = max(cos_sides_o, 0.0);// 1.0 - pow(1.0 - 0.5 * max(cos_sides_o, 0.0), vec3(5)); // vec3 side_factor_o = 1.0 - pow(1.0 - 0.5 * max(cos_sides_o, 0.0), vec3(5)); // // vec3 side_factor_o = max(cos_sides_o, 0.0);// 1.0 - pow(1.0 - 0.5 * max(cos_sides_o, vec3(0.0)), vec3(5.0));//max(sides * view_dir/* * sign(cos_sides_i) */, vec3(0.0)); // // vec3 side_factor_o = max(sides * view_dir/* * cos_sides_o*/, 0.0);// 1.0 - pow(1.0 - 0.5 * max(cos_sides_o, vec3(0.0)), vec3(5.0));//max(sides * view_dir/* * sign(cos_sides_i) */, vec3(0.0)); // // NOTE: side = transpose(sides), so we avoid the extra operatin. // // We multply the vector by the matrix from the *left*, so each normal gets multiplied by the corresponding factor. // // vec3 voxel_norm = normalize(/*sides * *//*sqrt(1.0 - cos_sides_i * cos_sides_i)*/(side_factor_i * side_factor_o)); // vec3 voxel_norm = normalize(/*sides * *//*sqrt(1.0 - cos_sides_i * cos_sides_i)*/((28.0 / (23.0 * PI)) * side_factor_i * side_factor_o * sides)); // vec3 voxel_norm = normalize(sign(f_norm) * sqrt(abs(f_norm)) * max(sign(f_norm) * view_dir, 0.0)); float f_ao = 1.0;//1.0;//sqrt(dot(cos_sides_i, cos_sides_i) / 3.0); // float f_ao = 0.2; // sqrt(dot(sqrt(1.0 - cos_sides_i * cos_sides_i)), 1.0 - cos_sides_o/* * cos_sides_o*/);// length(sqrt(1.0 - cos_sides_o * cos_sides_o) / cos_sides_i * cos_sides_o); // f_ao = f_ao * f_ao; // /* vec3 voxel_norm = vec3(0.0); // for (int i = 0; i < 3; i ++) { // // Light reflecting off the half-angle can shine on up to three sides. // // So, the idea here is to figure out the ratio of visibility of each of these // // three sides such that their sum adds to 1, then computing a Beckmann Distribution for each side times // // the this ratio. // // // // The ratio of these normals in each direction should be the sum of their cosines with the light over π, // // I think. // // // // cos (wh, theta) // // // // - one normal // // // // The ratio of each of the three exposed sides should just be the slope. // vec3 side = normals[i]; // side = faceforward(side, -f_norm, side); // float cos_wi = max(dot(f_norm, side), 0.0); // float cos_wo = max(dot(view_dir, side), 0.0); // float share = cos_wi * cos_wo; // // float share = (1.0 - pow5(1.0 - 0.5 * cos_wi)) * (1.0 - pow5(1.0 - 0.5 * cos_wo)); // voxel_norm += share * side; // // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0); // // voxel_norm += normals[i] * side_visible * max(dot(-cam_dir, normals[i]), 0.0); // } // voxel_norm = normalize(voxel_norm); */ float dist_lerp = 0.0;//clamp(pow(max(distance(focus_pos.xy, f_pos.xy) - view_distance.x, 0.0) / 4096.0, 2.0), 0, 1); // dist_lerp = 0.0; // voxel_norm = normalize(mix(voxel_norm, f_norm, /*pow(dist_lerp, 1.0)*/dist_lerp)); // IDEA: // We can represent three faces as sign(voxel_norm). vec3 sides = sign(f_norm); // There are three relevant vectors: normal, tangent, and bitangent. // We say normal is the z component, tangent the x component, bitangent the y. // A blocking side is in the reverse direction of each. // So -sides is the *direction* of the next block. // Now, we want to multiply this by the *distance* to the nearest integer in that direction. // If sides.x is -1, the direction is 1, so the distance is 1.0 - fract(f_pos.x) and the delta is 1.0 - fract(f_pos.x). // If sides.x is 1, the direction is -1, so the distance is fract(f_pos.x) and the delta is -fract(f_pos.x) = 1.0 + fract(-f_pos.x). // If sides.x is 0, the direction is 0, so the distance is 0.0 and the delta is 0.0 = 0.0 + fract(0.0 * f_pos.x). // (we ignore f_pos < 0 for the time being). // Then this is 1.0 + sides.x * fract(-sides.x * f_pos.x); // We repeat this for y. // // We treat z as the dependent variable. // IF voxel_norm.x > 0.0, z should increase by voxel_norm.z / voxel_norm.x * delta_sides.x in the x direction; // IF voxel_norm.y > 0.0, z should increase by voxel_norm.z / voxel_norm.y * delta_sides.y in the y direction; // IF voxel_norm.x = 0.0, z should not increase in the x direction; // IF voxel_norm.y = 0.0, z should not increase in the y direction; // we assume that ¬(voxel_norm.z = 0). // // Now observe that we can rephrase this as saying, given a desired change in z (to get to the next integer), how far must // we travel along x and y? // // TODO: Handle negative numbers. // vec3 delta_sides = mix(-fract(f_pos), 1.0 - fract(f_pos), lessThan(sides, vec3(0.0))); vec3 delta_sides = mix(fract(f_pos) - 1.0, fract(f_pos), lessThan(sides, vec3(0.0))); /* vec3 delta_sides = mix( mix(-fract(f_pos), 1.0 - fract(f_pos), lessThan(sides, vec3(0.0))), mix(-(f_pos - ceil(f_pos)), 1.0 - (f_pos - ceil(f_pos)), lessThan(sides, vec3(0.0))), lessThan(f_pos, vec3(0.0)) ); */ /* vec3 delta_sides = mix( mix(1.0 - fract(f_pos), -fract(f_pos), lessThan(sides, vec3(0.0))), mix(1.0 - (f_pos - ceil(f_pos)), -(f_pos - ceil(f_pos)), lessThan(sides, vec3(0.0))), lessThan(f_pos, vec3(0.0)) ); */ // vec3 delta_sides = mix(1.0 - fract(f_pos), -fract(f_pos), lessThan(sides, vec3(0.0))); // vec3 delta_sides = 1.0 + sides * fract(-sides * f_pos); // delta_sides = -sign(delta_sides) * (1.0 - abs(delta_sides)); // Three faces: xy, xz, and yz. // TODO: Handle zero slopes (for xz and yz). vec2 corner_xy = min(abs(f_norm.xy / f_norm.z * delta_sides.z), 1.0); vec2 corner_yz = min(abs(f_norm.yz / f_norm.x * delta_sides.x), 1.0); vec2 corner_xz = min(abs(f_norm.xz / f_norm.y * delta_sides.y), 1.0); // vec3 corner_delta = vec3(voxel_norm.xy / voxel_norm.z * delta_sides.z, delta_sides.z); // Now we just compute an (upper bounded) distance to the corner in each direction. // vec3 corner_distance = min(abs(corner_delta), 1.0); // Now, if both sides hit something, lerp to 0.25. If one side hits something, lerp to 0.75. And if no sides hit something, // lerp to 1.0 (TODO: incorporate the corner properly). // Bilinear interpolation on each plane: float ao_xy = dot(vec2(corner_xy.x, 1.0 - corner_xy.x), mat2(vec2(corner_xy.x < 1.00 ? corner_xy.y < 1.00 ? 0.25 : 0.5 : corner_xy.y < 1.00 ? 0.5 : 0.75, corner_xy.x < 1.00 ? 0.75 : 1.00), vec2(corner_xy.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(corner_xy.y, 1.0 - corner_xy.y)); float ao_yz = dot(vec2(corner_yz.x, 1.0 - corner_yz.x), mat2(vec2(corner_yz.x < 1.00 ? corner_yz.y < 1.00 ? 0.25 : 0.5 : corner_yz.y < 1.00 ? 0.5 : 0.75, corner_yz.x < 1.00 ? 0.75 : 1.00), vec2(corner_yz.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(corner_yz.y, 1.0 - corner_yz.y)); float ao_xz = dot(vec2(corner_xz.x, 1.0 - corner_xz.x), mat2(vec2(corner_xz.x < 1.00 ? corner_xz.y < 1.00 ? 0.25 : 0.5 : corner_xz.y < 1.00 ? 0.5 : 0.75, corner_xz.x < 1.00 ? 0.75 : 1.00), vec2(corner_xz.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(corner_xz.y, 1.0 - corner_xz.y)); /* float ao_xy = dot(vec2(1.0 - corner_xy.x, corner_xy.x), mat2(vec2(corner_xy.x < 1.00 ? corner_xy.y < 1.00 ? 0.25 : 0.5 : corner_xy.y < 1.00 ? 0.5 : 0.75, corner_xy.x < 1.00 ? 0.75 : 1.00), vec2(corner_xy.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(1.0 - corner_xy.y, corner_xy.y)); float ao_yz = dot(vec2(1.0 - corner_yz.x, corner_yz.x), mat2(vec2(corner_yz.x < 1.00 ? corner_yz.y < 1.00 ? 0.25 : 0.5 : corner_yz.y < 1.00 ? 0.5 : 0.75, corner_yz.x < 1.00 ? 0.75 : 1.00), vec2(corner_yz.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(1.0 - corner_yz.y, corner_yz.y)); float ao_xz = dot(vec2(1.0 - corner_xz.x, corner_xz.x), mat2(vec2(corner_xz.x < 1.00 ? corner_xz.y < 1.00 ? 0.25 : 0.5 : corner_xz.y < 1.00 ? 0.5 : 0.75, corner_xz.x < 1.00 ? 0.75 : 1.00), vec2(corner_xz.y < 1.00 ? 0.75 : 1.0, 1.0)) * vec2(1.0 - corner_xz.y, corner_xz.y)); */ // Now, if both sides hit something, lerp to 0.0. If one side hits something, lerp to 0.4. And if no sides hit something, // lerp to 1.0. // Bilinear interpolation on each plane: // float ao_xy = dot(vec2(1.0 - corner_xy.x, corner_xy.x), mat2(vec2(corner_xy.x < 1.00 ? corner_xy.y < 1.00 ? 0.0 : 0.25 : corner_xy.y < 1.00 ? 0.25 : 1.0, corner_xy.x < 1.00 ? 0.25 : 1.0), vec2(corner_xy.y < 1.00 ? 0.25 : 1.0, 1.0)) * vec2(1.0 - corner_xy.y, corner_xy.y)); // float ao_yz = dot(vec2(1.0 - corner_yz.x, corner_yz.x), mat2(vec2(corner_yz.x < 1.00 ? corner_yz.y < 1.00 ? 0.0 : 0.25 : corner_yz.y < 1.00 ? 0.25 : 1.0, corner_yz.x < 1.00 ? 0.25 : 1.0), vec2(corner_yz.y < 1.00 ? 0.25 : 1.0, 1.0)) * vec2(1.0 - corner_yz.y, corner_yz.y)); // float ao_xz = dot(vec2(1.0 - corner_xz.x, corner_xz.x), mat2(vec2(corner_xz.x < 1.00 ? corner_xz.y < 1.00 ? 0.0 : 0.25 : corner_xz.y < 1.00 ? 0.25 : 1.0, corner_xz.x < 1.00 ? 0.25 : 1.0), vec2(corner_xz.y < 1.00 ? 0.25 : 1.0, 1.0)) * vec2(1.0 - corner_xz.y, corner_xz.y)); // Now, multiply each component by the face "share" which is just the absolute value of its normal for that plane... // vec3 f_ao_vec = mix(abs(vec3(ao_yz, ao_xz, ao_xy)), vec3(1.0), bvec3(f_norm.yz == vec2(0.0), f_norm.xz == vec2(0.0), f_norm.xy == vec2(0.0))); // vec3 f_ao_vec = mix(abs(vec3(ao_yz, ao_xz, ao_xy)), vec3(1.0), bvec3(length(f_norm.yz) <= 0.0, length(f_norm.xz) <= 0.0, length(f_norm.xy) <= 0.0)); // vec3 f_ao_vec = mix(abs(vec3(ao_yz, ao_xz, ao_xy)), vec3(1.0), bvec3(abs(f_norm.x) <= 0.0, abs(f_norm.y) <= 0.0, abs(f_norm.z) <= 0.0)); vec3 f_ao_vec = mix(/*abs(voxel_norm)*/vec3(1.0, 1.0, 1.0), /*abs(voxel_norm) * */vec3(ao_yz, ao_xz, ao_xy), /*abs(voxel_norm)*/vec3(length(f_norm.yz), length(f_norm.xz), length(f_norm.xy))/*vec3(1.0)*//*sign(max(view_dir * sides, 0.0))*/); float f_orig_len = length(cam_pos.xyz - f_pos); vec3 f_orig_view_dir = normalize(cam_pos.xyz - f_pos); // f_ao_vec *= sign(max(f_orig_view_dir * sides, 0.0)); // Projecting view onto face: // bool IntersectRayPlane(vec3 rayOrigin, vec3 rayDirection, vec3 posOnPlane, vec3 planeNormal, inout vec3 intersectionPoint) // { // float rDotn = dot(rayDirection, planeNormal); // // //parallel to plane or pointing away from plane? // if (rDotn < 0.0000001 ) // return false; // // float s = dot(planeNormal, (posOnPlane - rayOrigin)) / rDotn; // // intersectionPoint = rayOrigin + s * rayDirection; // // return true; // } //bvec3 hit_yz_xz_xy; //vec3 dist_yz_xz_xy; /* { // vec3 rDotn = -f_orig_view_dir * -sides; // vec3 rDotn = f_orig_view_dir * sides; // hit_yz_xz_xy = greaterThanEqual(rDotn, vec3(0.000001)); // vec3 s = -sides * (f_pos + delta_sides - cam_pos.xyz) / rDotn; // dist_yz_xz_xy = abs(s * -f_orig_view_dir); // vec3 s = -sides * (f_pos + delta_sides - cam_pos.xyz) / (-f_orig_view_dir * -sides); // vec3 s = (f_pos + delta_sides - cam_pos.xyz) / -f_orig_view_dir; // dist_yz_xz_xy = abs(s); hit_yz_xz_xy = greaterThanEqual(f_orig_view_dir * sides, vec3(0.000001)); dist_yz_xz_xy = abs((f_pos + delta_sides - cam_pos.xyz) / -f_orig_view_dir); } */ { // vec3 rDotn = -f_orig_view_dir * -sides; // vec3 rDotn = f_orig_view_dir * sides; // hit_yz_xz_xy = greaterThanEqual(rDotn, vec3(0.000001)); // vec3 s = -sides * (f_pos + delta_sides - cam_pos.xyz) / rDotn; // dist_yz_xz_xy = abs(s * -f_orig_view_dir); // vec3 s = -sides * (f_pos + delta_sides - cam_pos.xyz) / (-f_orig_view_dir * -sides); // vec3 s = (f_pos + delta_sides - cam_pos.xyz) / -f_orig_view_dir; // dist_yz_xz_xy = abs(s); //hit_yz_xz_xy = greaterThanEqual(f_orig_view_dir * sides, vec3(0.000001)); //dist_yz_xz_xy = abs((f_pos + delta_sides - cam_pos.xyz) / f_orig_view_dir); } // vec3 xy_point = f_pos, xz_point = f_pos, yz_point = f_pos; // bool hit_xy = (/*ao_yz < 1.0 || ao_xz < 1.0*//*min(f_ao_vec.x, f_ao_vec.y)*//*f_ao_vec.z < 1.0*/true/*min(corner_xz.y, corner_yz.y) < 1.0*//*min(corner_xy.x, corner_xy.y) < 1.0*/) && IntersectRayPlane(cam_pos.xyz, -f_orig_view_dir, vec3(f_pos.x, f_pos.y, f_pos.z + delta_sides.z/* - sides.z*/), vec3(0.0, 0.0, -sides.z), xy_point); // bool hit_xz = (/*ao_xy < 1.0 || ao_yz < 1.0*//*min(f_ao_vec.x, f_ao_vec.z)*//*f_ao_vec.y < 1.0*/true/*min(corner_xy.y, corner_yz.x) < 1.0*//*min(corner_xz.x, corner_xz.y) < 1.0*/) && IntersectRayPlane(cam_pos.xyz, -f_orig_view_dir, vec3(f_pos.x, f_pos.y + delta_sides.y/* - sides.y*/, f_pos.z), vec3(0.0, -sides.y, 0.0), xz_point); // bool hit_yz = (/*ao_xy < 1.0 || ao_xz < 1.0*//*min(f_ao_vec.y, f_ao_vec.z) < 1.0*//*f_ao_vec.x < 1.0*/true/*true*//*min(corner_xy.x, corner_xz.x) < 1.0*//*min(corner_yz.x, corner_yz.y) < 1.0*/) && IntersectRayPlane(cam_pos.xyz, -f_orig_view_dir, vec3(f_pos.x + delta_sides.x/* - sides.x*/, f_pos.y, f_pos.z), vec3(-sides.x, 0.0, 0.0), yz_point); // float xy_dist = distance(cam_pos.xyz, xy_point), xz_dist = distance(cam_pos.xyz, xz_point), yz_dist = distance(cam_pos.xyz, yz_point); //bool hit_xy = hit_yz_xz_xy.z, hit_xz = hit_yz_xz_xy.y, hit_yz = hit_yz_xz_xy.x; //float xy_dist = dist_yz_xz_xy.z, xz_dist = dist_yz_xz_xy.y, yz_dist = dist_yz_xz_xy.x; // hit_xy = hit_xy && distance(f_pos.xy + delta_sides.xy, xy_point.xy) <= 1.0; // hit_xz = hit_xz && distance(f_pos.xz + delta_sides.xz, xz_point.xz) <= 1.0; // hit_yz = hit_yz && distance(f_pos.yz + delta_sides.yz, yz_point.yz) <= 1.0; /* vec3 voxel_norm = hit_yz ? hit_xz ? yz_dist < xz_dist ? hit_xy ? yz_dist < xy_dist ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : hit_xy ? xz_dist < xy_dist ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : hit_xy ? yz_dist < xy_dist ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : hit_xz ? hit_xy ? xz_dist < xy_dist ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : hit_xy ? vec3(0.0, 0.0, sides.z) : vec3(0.0, 0.0, 0.0); */ vec3 voxel_norm; const float VOXELIZE_DIST = 2000; float voxelize_factor = clamp(1.0 - (distance(focus_pos.xy, f_pos.xy) - view_distance.x) / VOXELIZE_DIST, 0, 1); vec3 cam_dir = normalize(cam_pos.xyz - f_pos.xyz); vec3 side_norm = normalize(vec3(my_norm.xy, 0)); vec3 top_norm = vec3(0, 0, 1); float side_factor = 1.0 - my_norm.z; // min(dot(vec3(0, -sign(cam_dir.y), 0), -cam_dir), dot(vec3(-sign(cam_dir.x), 0, 0), -cam_dir)) if (max(abs(my_norm.x), abs(my_norm.y)) < 0.01 || fract(my_alt) * clamp(dot(normalize(vec3(cam_dir.xy, 0)), side_norm), 0, 1) < cam_dir.z / my_norm.z) { f_ao *= mix(1.0, clamp(fract(my_alt) / length(my_norm.xy) + clamp(dot(side_norm, -cam_dir), 0, 1), 0, 1), voxelize_factor); voxel_norm = top_norm; } else { f_ao *= mix(1.0, clamp(pow(fract(my_alt), 0.5), 0, 1), voxelize_factor); if (fract(f_pos.x) * abs(my_norm.y / cam_dir.x) < fract(f_pos.y) * abs(my_norm.x / cam_dir.y)) { voxel_norm = vec3(sign(cam_dir.x), 0, 0); } else { voxel_norm = vec3(0, sign(cam_dir.y), 0); } } // vec3 f_ao_view = max(vec3(dot(f_orig_view_dir.yz, sides.yz), dot(f_orig_view_dir.xz, sides.xz), dot(f_orig_view_dir.xy, sides.xy)), 0.0); // delta_sides *= sqrt(1.0 - f_ao_view * f_ao_view); // delta_sides *= 1.0 - mix(view_dir / f_ao_view, vec3(0.0), equal(f_ao_view, vec3(0.0)));// sqrt(1.0 - f_ao_view * f_ao_view); // delta_sides *= 1.0 - /*sign*/(max(vec3(dot(f_orig_view_dir.yz, sides.yz), dot(f_orig_view_dir.xz, sides.xz), dot(f_orig_view_dir.xy, sides.xy)), 0.0)); // f_ao = length(f_ao_vec); // f_ao = dot(f_ao_vec, vec3(1.0)) / 3.0; // f_ao = 1.0 / sqrt(3.0) * sqrt(dot(f_ao_vec, vec3(1.0))); // f_ao = pow(f_ao_vec.x * f_ao_vec.y * f_ao_vec.z * 3.0, 1.0 / 2.0); // 1.0 / sqrt(3.0) * sqrt(dot(f_ao_vec, vec3(1.0))); // f_ao = pow(f_ao_vec.x * f_ao_vec.y * f_ao_vec.z, 1.0 / 3.0); // 1.0 / sqrt(3.0) * sqrt(dot(f_ao_vec, vec3(1.0))); // f_ao = f_ao_vec.x * f_ao_vec.y * f_ao_vec.z + (1.0 - f_ao_vec.x) * (1.0 - f_ao_vec.y) * (1.0 - f_ao_vec.z); // f_ao = sqrt((f_ao_vec.x + f_ao_vec.y + f_ao_vec.z) / 3.0); // 1.0 / sqrt(3.0) * sqrt(dot(f_ao_vec, vec3(1.0))); // f_ao = sqrt(dot(f_ao_vec, abs(voxel_norm))); // f_ao = 3.0 / (1.0 / f_ao_vec.x + 1.0 / f_ao_vec.y + 1.0 / f_ao_vec.z); // f_ao = min(ao_yz, min(ao_xz, ao_xy)); // f_ao = max(f_ao_vec.x, max(f_ao_vec.y, f_ao_vec.z)); // f_ao = min(f_ao_vec.x, min(f_ao_vec.y, f_ao_vec.z)); // f_ao = sqrt(dot(f_ao_vec * abs(voxel_norm), sqrt(1.0 - delta_sides * delta_sides)) / 3.0); // f_ao = dot(f_ao_vec, sqrt(1.0 - delta_sides * delta_sides)); // f_ao = dot(f_ao_vec, 1.0 - abs(delta_sides)); // f_ao = // f_ao_vec.x < 1.0 ? // f_ao_vec.y < 1.0 ? // abs(delta_sides.x) < abs(delta_sides.y) ? // f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? f_ao_vec.x : f_ao_vec.z : f_ao_vec.x : // f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? f_ao_vec.y : f_ao_vec.z : f_ao_vec.y : // f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? f_ao_vec.x : f_ao_vec.z : f_ao_vec.x : // f_ao_vec.y < 1.0 ? // f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? f_ao_vec.y : f_ao_vec.z : f_ao_vec.y : // f_ao_vec.z; // f_ao = abs(delta_sides.x) < abs(delta_sides.y) ? abs(delta_sides.x) < abs(delta_sides.z) ? f_ao_vec.x : f_ao_vec.z : // abs(delta_sides.y) < abs(delta_sides.z) ? f_ao_vec.y : f_ao_vec.z; // f_ao = abs(delta_sides.x) * f_ao_vec.x < abs(delta_sides.y) * f_ao_vec.y ? abs(delta_sides.x) * f_ao_vec.x < abs(delta_sides.z) * f_ao_vec.z ? f_ao_vec.x : f_ao_vec.z : // abs(delta_sides.y) * f_ao_vec.y < abs(delta_sides.z) * f_ao_vec.z ? f_ao_vec.y : f_ao_vec.z; // f_ao = dot(abs(voxel_norm), abs(voxel_norm) * f_ao_vec)/* / 3.0*/; // f_ao = sqrt(dot(abs(voxel_norm), f_ao_vec) / 3.0); // f_ao = /*abs(sides)*/max(sign(1.0 + f_orig_view_dir * sides), 0.0) * f_ao); // f_ao = mix(f_ao, 1.0, dist_lerp); // vec3 voxel_norm = f_norm; // vec3 voxel_norm = // f_ao_vec.x < 1.0 ? // f_ao_vec.y < 1.0 ? // abs(delta_sides.x) < abs(delta_sides.y) ? // f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // f_ao_vec.y < 1.0 ? // f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // f_ao_vec.z < 1.0 ? vec3(0.0, 0.0, sides.z) : vec3(0.0, 0.0, 0.0); // vec3 voxel_norm = // /*f_ao_vec.x < 1.0*/true ? // /*f_ao_vec.y < 1.0*/true ? // abs(delta_sides.x) < abs(delta_sides.y) ? // /*f_ao_vec.z < 1.0 */true ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // /*f_ao_vec.z < 1.0*/true ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // /*f_ao_vec.z < 1.0*/true ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // /*f_ao_vec.y < 1.0*/true ? // /*f_ao_vec.z < 1.0*/true ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // vec3(0.0, 0.0, sides.z); /* vec3 voxel_norm = f_ao_vec.x < 1.0 ? f_ao_vec.y < 1.0 ? abs(delta_sides.x) < abs(delta_sides.y) ? f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : f_ao_vec.z < 1.0 ? abs(delta_sides.x) < abs(delta_sides.z) ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : f_ao_vec.y < 1.0 ? f_ao_vec.z < 1.0 ? abs(delta_sides.y) < abs(delta_sides.z) ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : f_ao_vec.z < 1.0 ? vec3(0.0, 0.0, sides.z) : vec3(0.0, 0.0, 0.0); */ // vec3 voxel_norm = // f_ao_vec.x < 1.0 ? // f_ao_vec.y < 1.0 ? // abs(delta_sides.x) * f_ao_vec.x < abs(delta_sides.y) * f_ao_vec.y ? // f_ao_vec.z < 1.0 ? abs(delta_sides.x) * f_ao_vec.x < abs(delta_sides.z) * f_ao_vec.z ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // f_ao_vec.z < 1.0 ? abs(delta_sides.y) * f_ao_vec.y < abs(delta_sides.z) * f_ao_vec.z ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // f_ao_vec.z < 1.0 ? abs(delta_sides.x) * f_ao_vec.x < abs(delta_sides.z) * f_ao_vec.z ? vec3(sides.x, 0.0, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(sides.x, 0.0, 0.0) : // f_ao_vec.y < 1.0 ? // f_ao_vec.z < 1.0 ? abs(delta_sides.y) * f_ao_vec.y < abs(delta_sides.z) * f_ao_vec.z ? vec3(0.0, sides.y, 0.0) : vec3(0.0, 0.0, sides.z) : vec3(0.0, sides.y, 0.0) : // f_ao_vec.z < 1.0 ? vec3(0.0, 0.0, sides.z) : vec3(0.0, 0.0, 0.0); // vec3 voxel_norm = vec3(0.0); // voxel_norm = mix(voxel_norm, f_norm, dist_lerp); /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ // voxel_norm = vec3(0.0); #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE == FLUID_MODE_SHINY) float shadow_alt = /*f_pos.z;*/alt_at(f_pos.xy);//max(alt_at(f_pos.xy), f_pos.z); // float shadow_alt = f_pos.z; #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_CHEAP) float shadow_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); // float sun_shade_frac = 1.0; #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;//horizon_at2(f_shadow, shadow_alt, f_pos, moon_dir); // Magic stop-gap code without any physical justification. vec3 lerpy_norm; if (my_norm.z/*f_norm.z*/ > 0.99999) { lerpy_norm = vec3(0, 0, 1); } else { vec3 side_norm = normalize(vec3(my_norm.xy, 0)); // lerpy_norm = f_norm; float mix_factor = clamp(abs(dot(f_orig_view_dir, side_norm)), 0, 1); lerpy_norm = mix( mix(my_norm, side_norm, clamp(dot(side_norm, my_norm) + 0.5, 0, 1)), my_norm, mix_factor ); } const float DIST = 0.07; voxel_norm = normalize(mix(voxel_norm, lerpy_norm, clamp(my_norm.z * my_norm.z - (1.0 - DIST), 0, 1) / DIST)); f_pos.xyz += abs(voxel_norm) * delta_sides; voxel_norm = mix(my_norm, voxel_norm == vec3(0.0) ? f_norm : voxel_norm, voxelize_factor); vec3 hash_pos = f_pos + focus_off.xyz; const float A = 0.055; const float W_INV = 1 / (1 + A); const float W_2 = W_INV * W_INV;//pow(W_INV, 2.4); const float NOISE_FACTOR = 0.02;//pow(0.02, 1.2); float noise = hash(vec4(floor(hash_pos * 3.0 - voxel_norm * 0.5), 0));//0.005/* - 0.01*/; vec3 noise_delta = (sqrt(f_col_raw) * W_INV + noise * NOISE_FACTOR); // noise_delta = noise_delta * noise_delta * W_2 - f_col; // lum = W ⋅ col // lum + noise = W ⋅ (col + delta) // W ⋅ col + noise = W ⋅ col + W ⋅ delta // noise = W ⋅ delta // delta = noise / W // vec3 col = (f_col + noise_delta); // vec3 col = noise_delta * noise_delta * W_2; vec3 f_col = noise_delta * noise_delta * W_2; // f_col = /*srgb_to_linear*/(f_col + hash(vec4(floor(hash_pos * 3.0 - voxel_norm * 0.5), 0)) * 0.01/* - 0.01*/); // Small-scale noise // f_ao = 1.0; // f_ao = dot(f_ao_vec, sqrt(1.0 - delta_sides * delta_sides)); f_ao *= dot(f_ao_vec, abs(voxel_norm)); // f_ao = sqrt(dot(f_ao_vec * abs(voxel_norm), sqrt(1.0 - delta_sides * delta_sides)) / 3.0); // vec3 ao_pos2 = min(fract(f_pos), 1.0 - fract(f_pos)); // f_ao = sqrt(dot(ao_pos2, ao_pos2)); // // f_ao = dot(abs(voxel_norm), f_ao_vec); // // voxel_norm = f_norm; // Note: because voxels, we reduce the normal for reflections to just its z component, dpendng on distance to camera. // Idea: the closer we are to facing top-down, the more the norm should tend towards up-z. // vec3 l_norm; // = vec3(0.0, 0.0, 1.0); // vec3 l_norm = normalize(vec3(f_norm.x / max(abs(f_norm.x), 0.001), f_norm.y / max(abs(f_norm.y), 0.001), f_norm.z / max(abs(f_norm.z), 0.001))); // vec3 l_factor = 1.0 / (1.0 + max(abs(/*f_pos - cam_pos.xyz*//*-vec3(vert_pos4) / vert_pos4.w*/vec3(f_pos.xy, 0.0) - vec3(/*cam_pos*/focus_pos.xy, cam_to_frag)) - vec3(view_distance.x, view_distance.x, 0.0), 0.0) / vec3(32.0 * 2.0, 32.0 * 2.0, 1.0)); // l_factor.z = // vec4 focus_pos4 = view_mat * vec4(focus_pos.xyz, 1.0); // vec3 focus_dir = normalize(-vec3(focus_pos4) / focus_pos4.w); // float l_factor = 1.0 - pow(clamp(0.5 + 0.5 * dot(/*-view_dir*/-cam_to_frag, l_norm), 0.0, 1.0), 2.0);//1.0 / (1.0 + 0.5 * pow(max(distance(/*focus_pos.xy*/vec3(focus_pos.xy, /*vert_pos4.z / vert_pos4.w*/f_pos.z), vec3(f_pos.xy, f_pos.z))/* - view_distance.x*/ - 32.0, 0.0) / (32.0 * 1.0), /*0.5*/1.0)); // l_factor = 1.0; // l_norm = normalize(mix(l_norm, f_norm, l_factor)); // l_norm = f_norm; /* l_norm = normalize(vec3( mix(l_norm.x, f_norm.x, clamp(pow(f_norm.x * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.y * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.z * 0.5, 64), 0, 1)) )); */ // f_norm = mix(l_norm, f_norm, min(1.0 / max(cam_to_frag, 0.001), 1.0)); /* vec3 l_norm = normalize(vec3( mix(-1.0, 1.0, clamp(pow(f_norm.x * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.y * 0.5, 64), 0, 1)), mix(-1.0, 1.0, clamp(pow(f_norm.z * 0.5, 64), 0, 1)) )); */ vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); vec3 view_dir = -cam_to_frag; // vec3 view_dir = normalize(f_pos - cam_pos.xyz); // vec3 sun_dir = get_sun_dir(time_of_day.x); // vec3 moon_dir = get_moon_dir(time_of_day.x); // // float sun_light = get_sun_brightness(sun_dir); // // float moon_light = get_moon_brightness(moon_dir); // // float my_alt = f_pos.z;//alt_at_real(f_pos.xy); // // vec3 f_norm = my_norm; // // vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); // // float shadow_alt = /*f_pos.z;*/alt_at(f_pos.xy);//max(alt_at(f_pos.xy), f_pos.z); // // float my_alt = alt_at(f_pos.xy); // float sun_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, sun_dir); // float moon_shade_frac = horizon_at2(f_shadow, shadow_alt, f_pos, moon_dir); // // float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir); // // float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir); // // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). // // float shade_frac = sun_shade_frac + moon_shade_frac; // // float brightness_denominator = (ambient_sides + vec3(SUN_AMBIANCE * sun_light + moon_light); // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/); float alpha = 1.0;//0.1;//0.2;///1.0;//sqrt(2.0); const float n2 = 1.5; const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float cam_alt = alt_at(cam_pos.xy); float fluid_alt = medium.x == 1u ? max(cam_alt + 1, floor(shadow_alt)) : view_distance.w; float R_s = (f_pos.z < my_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 emitted_light, reflected_light; vec3 mu = medium.x == 1u/* && f_pos.z <= fluid_alt*/ ? MU_WATER : vec3(0.0); // NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water. vec3 cam_attenuation = compute_attenuation_point(cam_pos.xyz, view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos); // Use f_norm here for better shadows. // vec3 light_frac = light_reflection_factor(f_norm/*l_norm*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(/*1.0*/R_s), alpha); // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, (0.25 * shade_frac + 0.25 * light_frac) * f_col, 0.5 * shade_frac * f_col, 0.5 * shade_frac * /*vec3(1.0)*/f_col, 2.0, emitted_light, reflected_light); float max_light = 0.0; vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); max_light += get_sun_diffuse2(sun_info, moon_info, voxel_norm/*l_norm*/, view_dir, f_pos, vec3(0.0), cam_attenuation, fluid_alt, k_a/* * (0.5 * light_frac + vec3(0.5 * shade_frac))*/, k_d, /*0.5 * shade_frac * *//*vec3(1.0)*//*f_col*/vec3(R_s), alpha, voxel_norm, dist_lerp/*max(distance(focus_pos.xy, f_pos.xyz) - view_distance.x, 0.0) / 1000 < 1.0*/, emitted_light, reflected_light); // emitted_light = vec3(1.0); // emitted_light *= max(shade_frac, MIN_SHADOW); // reflected_light *= shade_frac; // max_light *= shade_frac; // reflected_light = vec3(0.0); // dot(diffuse_factor, /*R_r * */vec4(abs(norm) * (1.0 - dist), dist)) // corner_xy = mix(all(lessThan(corner_xy, 1.0)) ? vec2(0.0) : 0.4 * (), 1.0 // // TODO: Handle similar logic for z. // So we repeat this for all three sides to find the "next" position on each side. // vec3 delta_sides = 1.0 + sides * fract(-sides * f_pos); // Now, we // Now, all we have to do is find out whether (again, assuming f_pos is positive) next_sides represents a new integer. // We currently just treat this as "new floor != old floor". // So to find the position at the nearest voxel, we just subtract voxel_norm * fract(sides * ) from f_pos.z. // Then to find out whether we meet a new "block" in 1 voxel, we just // on the "other" side can be found (according to my temporary theory) as the cross product // vec3 norm = normalize(cross( // vec3(/*2.0 * SAMPLE_W*/square.z - square.x, 0.0, altx1 - altx0), // vec3(0.0, /*2.0 * SAMPLE_W*/square.w - square.y, alty1 - alty0) // )); // vec3 norm = normalize(vec3( // (altx0 - altx1) / (square.z - square.x), // (alty0 - alty1) / (square.w - square.y), // 1.0 // //(abs(square.w - square.y) + abs(square.z - square.x)) / (slope + 0.00001) // Avoid NaN // )); // // If a side coordinate is 0, then it counts as no AO; // otherwise, it counts as fractional AO. So what we need is to know whether the fractional AO to the next block in that direction pushes us to a new integer. // // vec3 ao_pos_z = floor(f_pos + f_norm); // vec3 ao_pos_z = corner_distance; // vec3 ao_pos = 0.5 - clamp(min(fract(abs(f_pos)), 1.0 - fract(abs(f_pos))), 0.0, 0.5); // // f_ao = /*sqrt*/1.0 - 2.0 * sqrt(dot(ao_pos, ao_pos) / 2.0); // f_ao = /*sqrt*/1.0 - (dot(ao_pos, ao_pos)/* / 2.0*/); // f_ao = /*sqrt*/1.0 - 2.0 * (dot(ao_pos, ao_pos)/* / 2.0*/); // f_ao = /*sqrt*/1.0 - 2.0 * sqrt(dot(ao_pos, ao_pos) / 2.0); float ao = f_ao;// /*pow(f_ao, 0.5)*/f_ao * 0.9 + 0.1; emitted_light *= ao; reflected_light *= ao; // emitted_light += 0.5 * vec3(SUN_AMBIANCE * sun_shade_frac * sun_light + moon_shade_frac * moon_light) * f_col * (ambient_sides + 1.0); // Ambient lighting attempt: vertical light. // reflected_light += /*0.0125*/0.15 * 0.25 * _col * light_reflection_factor(f_norm, cam_to_frag, vec3(0, 0, -1.0), 0.5 * f_col, 0.5 * f_col, 2.0); // emitted_light += /*0.0125*/0.25 * f_col * ; // vec3 light, diffuse_light, ambient_light; // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // vec3 surf_color = illuminate(f_col, light, diffuse_light, ambient_light); // f_col = f_col + (hash(vec4(floor(vec3(focus_pos.xy + splay(v_pos_orig), f_pos.z)) * 3.0 - round(f_norm) * 0.5, 0)) - 0.5) * 0.05; // Small-scale noise vec3 surf_color; #if (FLUID_MODE == FLUID_MODE_SHINY) if (length(f_col_raw - vec3(0.02, 0.06, 0.22)) < 0.025 && dot(vec3(0, 0, 1), f_norm) > 0.9) { vec3 water_color = (1.0 - MU_WATER) * MU_SCATTER; vec3 reflect_ray = cam_to_frag * vec3(1, 1, -1); float passthrough = dot(faceforward(f_norm, f_norm, cam_to_frag), -cam_to_frag); vec3 reflect_color = get_sky_color(reflect_ray, time_of_day.x, f_pos, vec3(-100000), 0.125, true); reflect_color = get_cloud_color(reflect_color, reflect_ray, cam_pos.xyz, time_of_day.x, 100000.0, 0.1); const float REFLECTANCE = 0.5; surf_color = illuminate(max_light, view_dir, f_col * emitted_light, reflect_color * REFLECTANCE + water_color * reflected_light); const vec3 underwater_col = vec3(0.0); float min_refl = min(emitted_light.r, min(emitted_light.g, emitted_light.b)); surf_color = mix(underwater_col, surf_color, (1.0 - passthrough) * 1.0 / (1.0 + min_refl)); } else { surf_color = illuminate(max_light, view_dir, f_col * emitted_light, f_col * reflected_light); } #else surf_color = illuminate(max_light, view_dir, f_col * emitted_light, f_col * reflected_light); #endif // float mist_factor = max(1 - (f_pos.z + (texture(t_noise, f_pos.xy * 0.0005 + time_of_day.x * 0.0003).x - 0.5) * 128.0) / 400.0, 0.0); // //float mist_factor = f_norm.z * 2.0; // color = mix(color, vec3(1.0) * /*diffuse_light*/reflected_light, clamp(mist_factor * 0.00005 * distance(f_pos.xy, focus_pos.xy), 0, 0.3)); // color = surf_color; tgt_color = vec4(surf_color, 1.0); }