use crate::util::{Dir, Plane, Projection}; use core::f32::consts::{FRAC_PI_2, PI, TAU}; use serde::{Deserialize, Serialize}; use specs::Component; use specs_idvs::IdvStorage; use vek::{Quaternion, Vec2, Vec3}; // Orientation #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] #[serde(into = "SerdeOri")] #[serde(from = "SerdeOri")] pub struct Ori(Quaternion); impl Default for Ori { /// Returns the default orientation (no rotation; default Dir) fn default() -> Self { Self(Quaternion::identity()) } } impl Ori { pub fn new(quat: Quaternion) -> Self { #[cfg(debug_assert)] { let v4 = quat.into_vec4(); debug_assert!(v4.map(f32::is_finite).reduce_and()); debug_assert!(v4.is_normalized()); } Self(quat) } /// Tries to convert into a Dir and then the appropriate rotation pub fn from_unnormalized_vec(vec: T) -> Option where T: Into>, { Dir::from_unnormalized(vec.into()).map(Self::from) } /// Look direction as a vector (no pedantic normalization performed) pub fn look_vec(self) -> Vec3 { self.to_quat() * *Dir::default() } /// Get the internal quaternion representing the rotation from /// `Dir::default()` to this orientation. /// /// The operation is a cheap copy. pub fn to_quat(self) -> Quaternion { debug_assert!(self.is_normalized()); self.0 } /// Look direction (as a Dir it is pedantically normalized) pub fn look_dir(&self) -> Dir { self.to_quat() * Dir::default() } pub fn up(&self) -> Dir { self.pitched_up(PI / 2.0).look_dir() } pub fn down(&self) -> Dir { self.pitched_down(PI / 2.0).look_dir() } pub fn left(&self) -> Dir { self.yawed_left(PI / 2.0).look_dir() } pub fn right(&self) -> Dir { self.yawed_right(PI / 2.0).look_dir() } pub fn slerp(ori1: Self, ori2: Self, s: f32) -> Self { Self(Quaternion::slerp(ori1.0, ori2.0, s).normalized()) } #[must_use] pub fn slerped_towards(self, ori: Ori, s: f32) -> Self { Self::slerp(self, ori, s) } /// Multiply rotation quaternion by `q` /// (the rotations are in local vector space). /// /// ``` /// use vek::{Quaternion, Vec3}; /// use veloren_common::{comp::Ori, util::Dir}; /// /// let ang = 90_f32.to_radians(); /// let roll_right = Quaternion::rotation_y(ang); /// let pitch_up = Quaternion::rotation_x(ang); /// /// let ori1 = Ori::from(Dir::new(Vec3::unit_x())); /// let ori2 = Ori::default().rotated(roll_right).rotated(pitch_up); /// /// assert!((ori1.look_dir().dot(*ori2.look_dir()) - 1.0).abs() <= f32::EPSILON); /// ``` #[must_use] pub fn rotated(self, q: Quaternion) -> Self { Self((self.to_quat() * q.normalized()).normalized()) } /// Premultiply rotation quaternion by `q` /// (the rotations are in global vector space). /// /// ``` /// use vek::{Quaternion, Vec3}; /// use veloren_common::{comp::Ori, util::Dir}; /// /// let ang = 90_f32.to_radians(); /// let roll_right = Quaternion::rotation_y(ang); /// let pitch_up = Quaternion::rotation_x(ang); /// /// let ori1 = Ori::from(Dir::up()); /// let ori2 = Ori::default().prerotated(roll_right).prerotated(pitch_up); /// /// assert!((ori1.look_dir().dot(*ori2.look_dir()) - 1.0).abs() <= f32::EPSILON); /// ``` #[must_use] pub fn prerotated(self, q: Quaternion) -> Self { Self((q.normalized() * self.to_quat()).normalized()) } /// Take `global` into this Ori's local vector space /// /// ``` /// use vek::Vec3; /// use veloren_common::{comp::Ori, util::Dir}; /// /// let ang = 90_f32.to_radians(); /// let (fw, left, up) = (Dir::default(), Dir::left(), Dir::up()); /// /// let ori = Ori::default().rolled_left(ang).pitched_up(ang); /// approx::assert_relative_eq!(ori.global_to_local(fw).dot(*-up), 1.0); /// approx::assert_relative_eq!(ori.global_to_local(left).dot(*fw), 1.0); /// let ori = Ori::default().rolled_right(ang).pitched_up(2.0 * ang); /// approx::assert_relative_eq!(ori.global_to_local(up).dot(*left), 1.0); /// ``` pub fn global_to_local(&self, global: T) -> as std::ops::Mul>::Output where Quaternion: std::ops::Mul, { self.to_quat().inverse() * global } /// Take `local` into the global vector space /// /// ``` /// use vek::Vec3; /// use veloren_common::{comp::Ori, util::Dir}; /// /// let ang = 90_f32.to_radians(); /// let (fw, left, up) = (Dir::default(), Dir::left(), Dir::up()); /// /// let ori = Ori::default().rolled_left(ang).pitched_up(ang); /// approx::assert_relative_eq!(ori.local_to_global(fw).dot(*left), 1.0); /// approx::assert_relative_eq!(ori.local_to_global(left).dot(*-up), 1.0); /// let ori = Ori::default().rolled_right(ang).pitched_up(2.0 * ang); /// approx::assert_relative_eq!(ori.local_to_global(up).dot(*left), 1.0); /// ``` pub fn local_to_global(&self, local: T) -> as std::ops::Mul>::Output where Quaternion: std::ops::Mul, { self.to_quat() * local } #[must_use] pub fn to_horizontal(self) -> Self { // We don't use Self::look_dir to avoid the extra normalization step within // Dir's Quaternion Mul impl let fw = self.to_quat() * Dir::default().to_vec(); // Check that dir is not straight up/down // Uses a multiple of EPSILON to be safe // We can just check z since beyond floating point errors `fw` should be // normalized if 1.0 - fw.z.abs() > f32::EPSILON * 4.0 { // We know direction lies in the xy plane so we only need to compute a rotation // about the z-axis let Vec2 { x, y } = fw.xy().normalized(); // Negate x and swap coords since we want to compute the angle from y+ let quat = rotation_2d(Vec2::new(y, -x), Vec3::unit_z()); Self(quat) } else { // if the direction is straight down, pitch up, or if straight up, pitch down if fw.z < 0.0 { self.pitched_up(FRAC_PI_2) } else { self.pitched_down(FRAC_PI_2) } // TODO: test this alternative for speed and correctness compared to // current impl // // removes a branch // // use core::f32::consts::FRAC_1_SQRT_2; // let cos = FRAC_1_SQRT_2; // let sin = -FRAC_1_SQRT_2 * fw.z.signum(); // let axis = Vec3::unit_x(); // let scalar = cos; // let vector = sin * axis; // Self((self.0 * Quaternion::from_scalar_and_vec3((scalar, // vector))).normalized()) } } /// Find the angle between two `Ori`s /// /// NOTE: This finds the angle of the quaternion between the two `Ori`s /// which can involve rolling and thus can be larger than simply the /// angle between vectors at the start and end points. /// /// Returns angle in radians pub fn angle_between(self, other: Self) -> f32 { // Compute quaternion from one ori to the other // https://www.mathworks.com/matlabcentral/answers/476474-how-to-find-the-angle-between-two-quaternions#answer_387973 let between = self.to_quat().conjugate() * other.to_quat(); // Then compute it's angle // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/ // // NOTE: acos is very sensitive to errors at small angles // - https://www.researchgate.net/post/How_do_I_calculate_the_smallest_angle_between_two_quaternions // - see angle_between unit test epislons let angle = 2.0 * between.w.min(1.0).max(-1.0).acos(); if angle < PI { angle } else { TAU - angle } } pub fn dot(self, other: Self) -> f32 { self.look_vec().dot(other.look_vec()) } #[must_use] pub fn pitched_up(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_x(angle_radians)) } #[must_use] pub fn pitched_down(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_x(-angle_radians)) } #[must_use] pub fn yawed_left(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_z(angle_radians)) } #[must_use] pub fn yawed_right(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_z(-angle_radians)) } #[must_use] pub fn rolled_left(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_y(-angle_radians)) } #[must_use] pub fn rolled_right(self, angle_radians: f32) -> Self { self.rotated(Quaternion::rotation_y(angle_radians)) } /// Returns a version which is rolled such that its up points towards `dir` /// as much as possible without pitching or yawing #[must_use] pub fn rolled_towards(self, dir: Dir) -> Self { dir.projected(&Plane::from(self.look_dir())) .map_or(self, |dir| self.prerotated(self.up().rotation_between(dir))) } /// Returns a version which has been pitched towards `dir` as much as /// possible without yawing or rolling #[must_use] pub fn pitched_towards(self, dir: Dir) -> Self { dir.projected(&Plane::from(self.right())) .map_or(self, |dir_| { self.prerotated(self.look_dir().rotation_between(dir_)) }) } /// Returns a version which has been yawed towards `dir` as much as possible /// without pitching or rolling #[must_use] pub fn yawed_towards(self, dir: Dir) -> Self { dir.projected(&Plane::from(self.up())).map_or(self, |dir_| { self.prerotated(self.look_dir().rotation_between(dir_)) }) } /// Returns a version without sideways tilt (roll) /// /// ``` /// use veloren_common::comp::Ori; /// /// let ang = 45_f32.to_radians(); /// let zenith = vek::Vec3::unit_z(); /// /// let rl = Ori::default().rolled_left(ang); /// assert!((rl.up().angle_between(zenith) - ang).abs() <= f32::EPSILON); /// assert!(rl.uprighted().up().angle_between(zenith) <= f32::EPSILON); /// /// let pd_rr = Ori::default().pitched_down(ang).rolled_right(ang); /// let pd_upr = pd_rr.uprighted(); /// /// assert!((pd_upr.up().angle_between(zenith) - ang).abs() <= f32::EPSILON); /// /// let ang1 = pd_upr.rolled_right(ang).up().angle_between(zenith); /// let ang2 = pd_rr.up().angle_between(zenith); /// assert!((ang1 - ang2).abs() <= f32::EPSILON); /// ``` #[must_use] pub fn uprighted(self) -> Self { self.look_dir().into() } fn is_normalized(&self) -> bool { self.0.into_vec4().is_normalized() } } /// Produce a quaternion from an axis to rotate about and a 2D point on the unit /// circle to rotate to /// /// NOTE: the provided axis and 2D vector must be normalized fn rotation_2d(Vec2 { x, y }: Vec2, axis: Vec3) -> Quaternion { // Skip needing the angle for quaternion construction by computing cos/sin // directly from the normalized x value // // scalar = cos(theta / 2) // vector = axis * sin(theta / 2) // // cos(a / 2) = +/- ((1 + cos(a)) / 2)^0.5 // sin(a / 2) = +/- ((1 - cos(a)) / 2)^0.5 // // scalar = +/- sqrt((1 + cos(a)) / 2) // vector = vec3(0, 0, 1) * +/- sqrt((1 - cos(a)) / 2) // // cos(a) = x / |xy| => x (when normalized) // Prevent NaNs from negative sqrt (float errors can put this slightly over 1.0) let x = x.min(1.0).max(-1.0); let scalar = ((1.0 + x) / 2.0).sqrt() * y.signum(); let vector = axis * ((1.0 - x) / 2.0).sqrt(); // This is normalized by our construction above Quaternion::from_scalar_and_vec3((scalar, vector)) } impl From for Ori { fn from(dir: Dir) -> Self { // Check that dir is not straight up/down // Uses a multiple of EPSILON to be safe let quat = if 1.0 - dir.z.abs() > f32::EPSILON * 4.0 { // Compute rotation that will give an "upright" orientation (no // rolling): let xy_len = dir.xy().magnitude(); let xy_norm = dir.xy() / xy_len; // Rotation to get to this projected point from the default direction of y+ // Negate x and swap coords since we want to compute the angle from y+ let yaw = rotation_2d(Vec2::new(xy_norm.y, -xy_norm.x), Vec3::unit_z()); // Rotation to then rotate up/down to the match the input direction // In this rotated space the xy_len becomes the distance along the x axis // And since we rotated around the z-axis the z value is unchanged let pitch = rotation_2d(Vec2::new(xy_len, dir.z), Vec3::unit_x()); (yaw * pitch).normalized() } else { // Nothing in particular can be considered upright if facing up or down // so we just produce a quaternion that will rotate to that direction // (once again rotating from y+) let pitch = PI / 2.0 * dir.z.signum(); Quaternion::rotation_x(pitch) }; Self(quat) } } impl From> for Ori { fn from(dir: Vec3) -> Self { Dir::from_unnormalized(dir).unwrap_or_default().into() } } impl From> for Ori { fn from(quat: Quaternion) -> Self { Self::new(quat) } } impl From> for Ori { fn from( vek::quaternion::repr_simd::Quaternion { x, y, z, w }: vek::quaternion::repr_simd::Quaternion, ) -> Self { Self::from(Quaternion { x, y, z, w }) } } impl From for Quaternion { fn from(Ori(q): Ori) -> Self { q } } impl From for vek::quaternion::repr_simd::Quaternion { fn from(Ori(Quaternion { x, y, z, w }): Ori) -> Self { vek::quaternion::repr_simd::Quaternion { x, y, z, w } } } impl From for Dir { fn from(ori: Ori) -> Self { ori.look_dir() } } impl From for Vec3 { fn from(ori: Ori) -> Self { ori.look_vec() } } impl From for vek::vec::repr_simd::Vec3 { fn from(ori: Ori) -> Self { vek::vec::repr_simd::Vec3::from(ori.look_vec()) } } impl From for Vec2 { fn from(ori: Ori) -> Self { ori.look_dir().to_horizontal().unwrap_or_default().xy() } } impl From for vek::vec::repr_simd::Vec2 { fn from(ori: Ori) -> Self { vek::vec::repr_simd::Vec2::from(ori.look_vec().xy()) } } // Validate at Deserialization #[derive(Copy, Clone, Default, Debug, PartialEq, Serialize, Deserialize)] struct SerdeOri(Quaternion); impl From for Ori { fn from(serde_quat: SerdeOri) -> Self { let quat: Quaternion = serde_quat.0; if quat.into_vec4().map(f32::is_nan).reduce_or() { tracing::warn!( ?quat, "Deserialized rotation quaternion containing NaNs, replacing with default" ); Default::default() } else if !Self(quat).is_normalized() { tracing::warn!( ?quat, "Deserialized unnormalized rotation quaternion (magnitude: {}), replacing with \ default", quat.magnitude() ); Default::default() } else { Self::new(quat) } } } impl From for SerdeOri { fn from(other: Ori) -> SerdeOri { SerdeOri(other.to_quat()) } } impl Component for Ori { type Storage = IdvStorage; } #[cfg(test)] mod tests { use super::*; // Helper method to produce Dirs at different angles to test fn dirs() -> impl Iterator { let angles = 32; (0..angles).flat_map(move |i| { let theta = PI * 2.0 * (i as f32) / (angles as f32); let v = Vec3::unit_y(); let q = Quaternion::rotation_x(theta); let dir_1 = Dir::new(q * v); let v = Vec3::unit_z(); let q = Quaternion::rotation_y(theta); let dir_2 = Dir::new(q * v); let v = Vec3::unit_x(); let q = Quaternion::rotation_z(theta); let dir_3 = Dir::new(q * v); [dir_1, dir_2, dir_3] }) } #[test] fn to_horizontal() { let to_horizontal = |dir: Dir| { let ori = Ori::from(dir); let horizontal = ori.to_horizontal(); approx::assert_relative_eq!(horizontal.look_dir().xy().magnitude(), 1.0); approx::assert_relative_eq!(horizontal.look_dir().z, 0.0); // Check correctness by comparing with Dir::to_horizontal if let Some(dir_h) = ori.look_dir().to_horizontal() { let quat_correct = Quaternion::::rotation_from_to_3d(Dir::default(), dir_h); #[rustfmt::skip] assert!( dir_h .map2(*horizontal.look_dir(), |d, o| approx::relative_eq!(d, o, epsilon = f32::EPSILON * 4.0)) .reduce_and(), "\n\ Original: {:?}\n\ Dir::to_horizontal: {:?}\n\ Ori::to_horizontal(as dir): {:?}\n\ Ori::to_horizontal(as quat): {:?}\n\ Correct quaternion {:?}", ori.look_dir(), dir_h, horizontal.look_dir(), horizontal, quat_correct, ); } }; dirs().for_each(to_horizontal); } #[test] fn angle_between() { let axis_list = (-16..17) .map(|i| i as f32 / 16.0) .flat_map(|fraction| { [ Vec3::new(1.0 - fraction, fraction, 0.0), Vec3::new(0.0, 1.0 - fraction, fraction), Vec3::new(fraction, 0.0, 1.0 - fraction), ] }) .collect::>(); // Iterator over some angles between 0 and 180 let angles = (0..129).map(|i| i as f32 / 128.0 * PI); for angle_a in angles.clone() { for angle_b in angles.clone() { for axis in axis_list.iter().copied() { let ori_a = Ori(Quaternion::rotation_3d(angle_a, axis)); let ori_b = Ori(Quaternion::rotation_3d(angle_b, axis)); let angle = (angle_a - angle_b).abs(); let epsilon = match angle { angle if angle > 0.5 => f32::EPSILON * 20.0, angle if angle > 0.2 => 0.00001, angle if angle > 0.01 => 0.0001, _ => 0.002, }; approx::assert_relative_eq!( ori_a.angle_between(ori_b), angle, epsilon = epsilon, ); } } } } #[test] fn from_to_dir() { let from_to = |dir: Dir| { let ori = Ori::from(dir); assert!(ori.is_normalized(), "ori {:?}\ndir {:?}", ori, dir); assert!( approx::relative_eq!(ori.look_dir().dot(*dir), 1.0), "Ori::from(dir).look_dir() != dir\ndir: {:?}\nOri::from(dir).look_dir(): {:?}", dir, ori.look_dir(), ); approx::assert_relative_eq!((ori.to_quat() * Dir::default()).dot(*dir), 1.0); }; dirs().for_each(from_to); } #[test] fn orthogonal_dirs() { let ori = Ori::default(); let def = Dir::default(); for dir in &[ori.up(), ori.down(), ori.left(), ori.right()] { approx::assert_relative_eq!(dir.dot(*def), 0.0); } } }