use std::{ ops::{Add, Sub, Mul, Div, Neg}, f32, }; use noise::{NoiseFn, BasicMulti, HybridMulti, RidgedMulti, SuperSimplex, OpenSimplex, Seedable, MultiFractal}; use vek::*; use common::{ terrain::TerrainChunkSize, vol::VolSize, }; pub const WORLD_SIZE: Vec2 = Vec2 { x: 1024, y: 1024 }; pub struct WorldSim { pub seed: u32, chunks: Vec, gen_ctx: GenCtx, } impl WorldSim { pub fn generate(seed: u32) -> Self { let mut gen_ctx = GenCtx { turb_x_nz: BasicMulti::new() .set_seed(seed + 0), turb_y_nz: BasicMulti::new() .set_seed(seed + 1), chaos_nz: RidgedMulti::new() .set_octaves(7) .set_seed(seed + 2), hill_nz: SuperSimplex::new() .set_seed(seed + 3), alt_nz: HybridMulti::new() .set_octaves(7) .set_persistence(0.1) .set_seed(seed + 4), temp_nz: SuperSimplex::new() .set_seed(seed + 5), small_nz: BasicMulti::new() .set_octaves(2) .set_seed(seed + 6), rock_nz: HybridMulti::new() .set_persistence(0.3) .set_seed(seed + 7), }; let mut chunks = Vec::new(); for x in 0..WORLD_SIZE.x as u32 { for y in 0..WORLD_SIZE.y as u32 { chunks.push(SimChunk::generate(Vec2::new(x, y), &mut gen_ctx)); } } Self { seed, chunks, gen_ctx, } } pub fn get(&self, chunk_pos: Vec2) -> Option<&SimChunk> { if chunk_pos.map2(WORLD_SIZE, |e, sz| e < sz as u32).reduce_and() { Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize]) } else { None } } pub fn get_base_z(&self, chunk_pos: Vec2) -> Option { self .get(chunk_pos) .and_then(|_| (0..2) .map(|i| (0..2) .map(move |j| (i, j))) .flatten() .map(|(i, j)| self .get(chunk_pos + Vec2::new(i, j)) .map(|c| c.get_base_z())) .flatten() .fold(None, |a: Option, x| a.map(|a| a.min(x)).or(Some(x)))) } pub fn get_interpolated(&self, pos: Vec2, mut f: F) -> Option where T: Copy + Default + Add + Mul, F: FnMut(&SimChunk) -> T, { let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| e as f64 / sz as f64); let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T { let x2 = x * x; // Catmull-Rom splines let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5; let co1 = a + b * -2.5 + c * 2.0 + d * -0.5; let co2 = a * -0.5 + c * 0.5; let co3 = b; co0 * x2 * x + co1 * x2 + co2 * x + co3 }; let mut y = [T::default(); 4]; for (y_idx, j) in (-1..3).enumerate() { let x0 = f(self.get(pos.map2(Vec2::new(-1, j), |e, q| (e.max(0.0) as i32 + q) as u32))?); let x1 = f(self.get(pos.map2(Vec2::new( 0, j), |e, q| (e.max(0.0) as i32 + q) as u32))?); let x2 = f(self.get(pos.map2(Vec2::new( 1, j), |e, q| (e.max(0.0) as i32 + q) as u32))?); let x3 = f(self.get(pos.map2(Vec2::new( 2, j), |e, q| (e.max(0.0) as i32 + q) as u32))?); y[y_idx] = cubic(x0, x1, x2, x3, pos.x.fract() as f32); } Some(cubic(y[0], y[1], y[2], y[3], pos.y.fract() as f32)) } pub fn sample(&self, pos: Vec2) -> Option { let wposf = pos.map(|e| e as f64); /*let wposf = wposf + Vec2::new( self.gen_ctx.turb_x_nz.get((wposf.div(200.0)).into_array()) * 250.0, self.gen_ctx.turb_y_nz.get((wposf.div(200.0)).into_array()) * 250.0, );*/ let chaos = self.get_interpolated(pos, |chunk| chunk.chaos)?; let temp = self.get_interpolated(pos, |chunk| chunk.temp)?; let rockiness = self.get_interpolated(pos, |chunk| chunk.rockiness)?; let rock = (self.gen_ctx.small_nz.get((wposf.div(200.0)).into_array()) as f32) .mul(rockiness) .sub(0.3) .max(0.0) .mul(2.5); let alt = self.get_interpolated(pos, |chunk| chunk.alt)? + self.gen_ctx.small_nz.get((wposf.div(128.0)).into_array()) as f32 * chaos.max(0.2) * 32.0 + rock * 30.0; // Colours let cold_grass = Rgb::new(0.0, 0.75, 0.25); let warm_grass = Rgb::new(0.55, 0.9, 0.0); let stone = Rgb::new(0.8, 0.7, 0.551); let grass = Rgb::lerp(cold_grass, warm_grass, temp); let ground = Rgb::lerp(grass, stone, rock.mul(5.0).min(0.8)); let cliff = stone; Some(Sample { alt, surface_color: Rgb::lerp(ground, cliff, (alt - SEA_LEVEL) / 150.0), }) } } pub struct Sample { pub alt: f32, pub surface_color: Rgb, } struct GenCtx { turb_x_nz: BasicMulti, turb_y_nz: BasicMulti, chaos_nz: RidgedMulti, alt_nz: HybridMulti, hill_nz: SuperSimplex, temp_nz: SuperSimplex, small_nz: BasicMulti, rock_nz: HybridMulti, } const Z_TOLERANCE: (f32, f32) = (32.0, 64.0); const SEA_LEVEL: f32 = 64.0; pub struct SimChunk { pub chaos: f32, pub alt: f32, pub temp: f32, pub rockiness: f32, } impl SimChunk { fn generate(pos: Vec2, gen_ctx: &mut GenCtx) -> Self { let wposf = (pos * Vec2::from(TerrainChunkSize::SIZE)).map(|e| e as f64); let hill = (gen_ctx.hill_nz .get((wposf.div(3500.0)).into_array()) as f32) .add(1.0).mul(0.5); let chaos = (gen_ctx.chaos_nz .get((wposf.div(3500.0)).into_array()) as f32) .add(1.0).mul(0.5) .powf(1.9) .add(0.25 * hill); let chaos = chaos + chaos.mul(20.0).sin().mul(0.05); let alt_main = gen_ctx.alt_nz.get((wposf.div(750.0)).into_array()) as f32; Self { chaos, alt: SEA_LEVEL + (0.0 + alt_main + gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32 * alt_main * 1.3) .add(1.0).mul(0.5) .mul(chaos) .mul(750.0), temp: (gen_ctx.temp_nz.get((wposf.div(48.0)).into_array()) as f32) .add(1.0).mul(0.5), rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32) .sub(0.1) .mul(1.2) .max(0.0), } } pub fn get_base_z(&self) -> f32 { self.alt - Z_TOLERANCE.0 } pub fn get_max_z(&self) -> f32 { self.alt + Z_TOLERANCE.1 } } trait Hsv { fn into_hsv(self) -> Self; fn into_rgb(self) -> Self; } impl Hsv for Rgb { fn into_hsv(mut self) -> Self { unimplemented!() } fn into_rgb(mut self) -> Self { unimplemented!() } }