#version 330 core #include #include in uint v_pos_norm; in vec3 v_norm; in uint v_col; in uint v_ao_bone; layout (std140) uniform u_locals { mat4 model_mat; vec4 model_col; // bit 0 - is player // bit 1-31 - unused int flags; }; struct BoneData { mat4 bone_mat; }; layout (std140) uniform u_bones { // Warning: might not actually be 16 elements long. Don't index out of bounds! BoneData bones[16]; }; out vec3 f_pos; out vec3 f_col; out float f_ao; flat out vec3 f_norm; // out float f_alt; // out vec4 f_shadow; void main() { // Pre-calculate bone matrix uint bone_idx = (v_ao_bone >> 2) & 0x3Fu; mat4 combined_mat = model_mat * bones[bone_idx].bone_mat; vec3 pos = vec3((uvec3(v_pos_norm) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) - 128.0; f_pos = ( combined_mat * vec4(pos, 1)).xyz; f_col = srgb_to_linear(vec3((uvec3(v_col) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) / 255.0); f_ao = float(v_ao_bone & 0x3u) / 4.0; // First 3 normals are negative, next 3 are positive vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1)); vec3 norm = normals[(v_pos_norm >> 24) & 0x7u]; // Calculate normal here rather than for each pixel in the fragment shader f_norm = normalize(( combined_mat * vec4(norm, 0.0) ).xyz); // Also precalculate shadow texture and estimated terrain altitude. // f_alt = alt_at(f_pos.xy); // f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy)); gl_Position = all_mat * vec4(f_pos, 1); // gl_Position.z = -gl_Position.z / 100.0; gl_Position.z = -1000.0 / (gl_Position.z + 10000.0); }