#version 330 core #include in vec3 f_pos; in vec3 f_col; flat in vec3 f_norm; in float f_alt; in vec4 f_shadow; layout (std140) uniform u_locals { mat4 model_mat; vec4 model_col; }; struct BoneData { mat4 bone_mat; }; layout (std140) uniform u_bones { BoneData bones[16]; }; #include #include #include out vec4 tgt_color; void main() { vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; vec3 surf_color = /*srgb_to_linear*/(model_col.rgb * f_col); float alpha = 1.0; const float n2 = 1.01; const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 emitted_light, reflected_light; float point_shadow = shadow_at(f_pos, f_norm); // vec3 light_frac = /*vec3(1.0);*//*vec3(max(dot(f_norm, -sun_dir) * 0.5 + 0.5, 0.0));*/light_reflection_factor(f_norm, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha); // vec3 point_light = light_at(f_pos, f_norm); // vec3 light, diffuse_light, ambient_light; //get_sun_diffuse(f_norm, time_of_day.x, view_dir, k_a * point_shadow * (shade_frac * 0.5 + light_frac * 0.5), k_d * point_shadow * shade_frac, k_s * point_shadow * shade_frac, alpha, emitted_light, reflected_light); get_sun_diffuse2(f_norm, sun_dir, moon_dir, view_dir, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, k_d, k_s, alpha, emitted_light, reflected_light); reflected_light *= point_shadow * shade_frac; emitted_light *= point_shadow; lights_at(f_pos, f_norm, view_dir, k_a, k_d, k_s, alpha, emitted_light, reflected_light); /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 2.0, emitted_light, reflected_light); // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // diffuse_light *= point_shadow; // ambient_light *= point_shadow; // vec3 point_light = light_at(f_pos, f_norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // vec3 surf_color = illuminate(srgb_to_linear(model_col.rgb * f_col), light, diffuse_light, ambient_light); surf_color = illuminate(surf_color * emitted_light, surf_color * reflected_light); float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x); vec4 clouds; vec3 fog_color = get_sky_color(cam_to_frag/*view_dir*/, time_of_day.x, cam_pos.xyz, f_pos, 0.5, true, clouds); vec3 color = mix(mix(surf_color, fog_color, fog_level), clouds.rgb, clouds.a); tgt_color = vec4(color, 1.0); }