use rayon::prelude::*; /// From https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/Diffusion.f90 /// /// See https://fastscape-lem.github.io/fastscapelib-fortran /// /// nx = grid size x /// /// ny = grid size y /// /// xl = x-dimension of the model topography in meters (double precision) /// /// yl = y-dimension of the model topography in meters (double precision) /// /// dt = length of the time step in years (double precision) /// /// ibc = boundary conditions for grid. For now, we assume all four boundaries are fixed height, /// so this parameter is ignored. /// /// h = heights of cells at each cell in the grid. /// /// b = basement height at each cell in the grid (see https://en.wikipedia.org/wiki/Basement_(geology)). /// /// kd = bedrock transport coefficient (or diffusivity) for hillslope processes in meter squared per year /// (double precision) at each cell in the grid. /// /// kdsed = sediment transport coefficient (or diffusivity) for hillslope processes in meter squared per year; /// (double precision;) note that when kdsed < 0, its value is not used, i.e., kd for sediment and bedrock have /// the same value, regardless of sediment thickness /* subroutine Diffusion () ! subroutine to solve the diffusion equation by ADI use FastScapeContext implicit none */ pub fn diffusion(nx: usize, ny: usize, xl: f64, yl: f64, dt: f64, _ibc: (), h: &mut [/*f64*/f32], b: &mut [/*f64*/f32], kd: impl Fn(usize) -> f64, kdsed: f64, ) { let aij = |i: usize, j: usize| j * nx + i; /* double precision, dimension(:), allocatable :: f,diag,sup,inf,res double precision, dimension(:,:), allocatable :: zint,kdint,zintp integer i,j,ij double precision factxp,factxm,factyp,factym,dx,dy */ let mut f : Vec; let mut diag : Vec; let mut sup : Vec; let mut inf : Vec; let mut res : Vec; let mut zint : Vec; let mut kdint : Vec; let mut zintp : Vec; let mut i : usize; let mut j : usize; let mut ij : usize; let mut factxp : f64; let mut factxm : f64; let mut factyp : f64; let mut factym : f64; let mut dx : f64; let mut dy : f64; /* character cbc*4 !print*,'Diffusion' write (cbc,'(i4)') ibc dx=xl/(nx-1) dy=yl/(ny-1) */ // 2048*32/2048/2048 // 1 / 64 m dx = xl / /*(nx - 1)*/nx as f64; dy = yl / /*(ny - 1)*/ny as f64; /* ! creates 2D internal arrays to store topo and kd allocate (zint(nx,ny),kdint(nx,ny),zintp(nx,ny)) */ zint = vec![Default::default(); nx * ny]; kdint = vec![Default::default(); nx * ny]; zintp = vec![Default::default(); nx * ny]; /* do j=1,ny do i=1,nx ij=(j-1)*nx+i zint(i,j)=h(ij) kdint(i,j)=kd(ij) if (kdsed.gt.0.d0 .and. (h(ij)-b(ij)).gt.1.d-6) kdint(i,j)=kdsed enddo enddo zintp = zint */ for j in 0..ny { for i in 0..nx { // ij = vec2_as_uniform_idx(i, j); ij = aij(i, j); zint[ij] = h[ij] as f64; kdint[ij] = kd(ij); if kdsed > 0.0 && (h[ij] - b[ij]) > 1.0e-6 { kdint[ij] = kdsed; } } } zintp = zint.clone(); /* ! first pass along the x-axis allocate (f(nx),diag(nx),sup(nx),inf(nx),res(nx)) f=0.d0 diag=0.d0 sup=0.d0 inf=0.d0 res=0.d0 do j=2,ny-1 */ f = vec![0.0; nx]; diag = vec![0.0; nx]; sup = vec![0.0; nx]; inf = vec![0.0; nx]; res = vec![0.0; nx]; for j in 1..ny-1 { /* do i=2,nx-1 factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2 factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2 factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2 factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2 diag(i)=1.d0+factxp+factxm sup(i)=-factxp inf(i)=-factxm f(i)=zintp(i,j)+factyp*zintp(i,j+1)-(factyp+factym)*zintp(i,j)+factym*zintp(i,j-1) enddo */ for i in 1..nx-1 { factxp = (kdint[aij(i+1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factxm = (kdint[aij(i-1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factyp = (kdint[aij(i, j+1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy); factym = (kdint[aij(i, j-1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[i] = 1.0 + factxp + factxm; sup[i] = -factxp; inf[i] = -factxm; f[i] = zintp[aij(i, j)] + factyp * zintp[aij(i, j+1)] - (factyp + factym) * zintp[aij(i, j)] + factym * zintp[aij(i, j-1)]; } /* ! left bc if (cbc(4:4).eq.'1') then diag(1)=1. sup(1)=0. f(1)=zintp(1,j) else factxp=(kdint(2,j)+kdint(1,j))/2.d0*(dt/2.)/dx**2 factyp=(kdint(1,j+1)+kdint(1,j))/2.d0*(dt/2.)/dy**2 factym=(kdint(1,j-1)+kdint(1,j))/2.d0*(dt/2.)/dy**2 diag(1)=1.d0+factxp sup(1)=-factxp f(1)=zintp(1,j)+factyp*zintp(1,j+1)-(factyp+factym)*zintp(1,j)+factym*zintp(1,j-1) endif */ if false { diag[0] = 1.0; sup[0] = 0.0; f[0] = zintp[aij(0, j)]; } else { // reflective boundary factxp = (kdint[aij(1, j)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factyp = (kdint[aij(0, j+1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy); factym = (kdint[aij(0, j-1)] + kdint[aij(0, j)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[0] = 1.0 + factxp; sup[0] = -factxp; f[0] = zintp[aij(0, j)] + factyp * zintp[aij(0, j+1)] - (factyp + factym) * zintp[aij(0, j)] + factym * zintp[aij(0, j-1)]; } /* ! right bc if (cbc(2:2).eq.'1') then diag(nx)=1. inf(nx)=0. f(nx)=zintp(nx,j) else factxm=(kdint(nx-1,j)+kdint(nx,j))/2.d0*(dt/2.)/dx**2 factyp=(kdint(nx,j+1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2 factym=(kdint(nx,j-1)+kdint(nx,j))/2.d0*(dt/2.)/dy**2 diag(nx)=1.d0+factxm inf(nx)=-factxm f(nx)=zintp(nx,j)+factyp*zintp(nx,j+1)-(factyp+factym)*zintp(nx,j)+factym*zintp(nx,j-1) endif */ if false { diag[nx - 1] = 1.0; inf[nx - 1] = 0.0; f[nx - 1] = zintp[aij(nx - 1, j)]; } else { // reflective boundary factxm = (kdint[aij(nx-2, j)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factyp = (kdint[aij(nx-1, j+1)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dy * dy); factym = (kdint[aij(nx-1, j-1)] + kdint[aij(nx-1, j)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[nx - 1] = 1.0 + factxm; inf[nx - 1] = -factxm; f[nx - 1] = zintp[aij(nx-1, j)] + factyp * zintp[aij(nx-1, j+1)] - (factyp + factym) * zintp[aij(nx-1, j)] + factym * zintp[aij(nx-1, j-1)]; } /* call tridag (inf,diag,sup,f,res,nx) do i=1,nx zint(i,j)=res(i) enddo */ tridag(&inf, &diag, &sup, &f, &mut res, nx); for i in 0..nx { zint[aij(i, j)] = res[i]; } /* enddo deallocate (f,diag,sup,inf,res) */ } /* ! second pass along y-axis allocate (f(ny),diag(ny),sup(ny),inf(ny),res(ny)) f=0.d0 diag=0.d0 sup=0.d0 inf=0.d0 res=0.d0 do i=2,nx-1 */ f = vec![0.0; ny]; diag = vec![0.0; ny]; sup = vec![0.0; ny]; inf = vec![0.0; ny]; res = vec![0.0; ny]; for i in 1..nx-1 { /* do j=2,ny-1 factxp=(kdint(i+1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2 factxm=(kdint(i-1,j)+kdint(i,j))/2.d0*(dt/2.)/dx**2 factyp=(kdint(i,j+1)+kdint(i,j))/2.d0*(dt/2.)/dy**2 factym=(kdint(i,j-1)+kdint(i,j))/2.d0*(dt/2.)/dy**2 diag(j)=1.d0+factyp+factym sup(j)=-factyp inf(j)=-factym f(j)=zint(i,j)+factxp*zint(i+1,j)-(factxp+factxm)*zint(i,j)+factxm*zint(i-1,j) enddo */ for j in 1..ny-1 { factxp = (kdint[aij(i+1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factxm = (kdint[aij(i-1, j)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factyp = (kdint[aij(i, j+1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy); factym = (kdint[aij(i, j-1)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[j] = 1.0 + factyp + factym; sup[j] = -factyp; inf[j] = -factym; f[j] = zint[aij(i, j)] + factxp * zint[aij(i+1, j)] - (factxp + factxm) * zint[aij(i, j)] + factxm * zint[aij(i-1, j)]; } /* ! bottom bc if (cbc(1:1).eq.'1') then diag(1)=1. sup(1)=0. f(1)=zint(i,1) else factxp=(kdint(i+1,1)+kdint(i,j))/2.d0*(dt/2.)/dx**2 factxm=(kdint(i-1,1)+kdint(i,1))/2.d0*(dt/2.)/dx**2 factyp=(kdint(i,2)+kdint(i,1))/2.d0*(dt/2.)/dy**2 diag(1)=1.d0+factyp sup(1)=-factyp f(1)=zint(i,1)+factxp*zint(i+1,1)-(factxp+factxm)*zint(i,1)+factxm*zint(i-1,1) endif */ if true { diag[0] = 1.0; sup[0] = 0.0; f[0] = zint[aij(i, 0)]; } else { // reflective boundary // TODO: Check whether this j was actually supposed to be a 0 in the original // (probably). // factxp = (kdint[aij(i+1, 0)] + kdint[aij(i, j)]) / 2.0 * (dt / 2.0) / (dx * dx); factxp = (kdint[aij(i+1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx); factxm = (kdint[aij(i-1, 0)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dx * dx); factyp = (kdint[aij(i, 1)] + kdint[aij(i, 0)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[0] = 1.0 + factyp; sup[0] = -factyp; f[0] = zint[aij(i, 0)] + factxp * zint[aij(i+1, 0)] - (factxp + factxm) * zint[aij(i, 0)] + factxm * zint[aij(i-1, 0)]; } /* ! top bc if (cbc(3:3).eq.'1') then diag(ny)=1. inf(ny)=0. f(ny)=zint(i,ny) else factxp=(kdint(i+1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2 factxm=(kdint(i-1,ny)+kdint(i,ny))/2.d0*(dt/2.)/dx**2 factym=(kdint(i,ny-1)+kdint(i,ny))/2.d0*(dt/2.)/dy**2 diag(ny)=1.d0+factym inf(ny)=-factym f(ny)=zint(i,ny)+factxp*zint(i+1,ny)-(factxp+factxm)*zint(i,ny)+factxm*zint(i-1,ny) endif */ if true { diag[ny - 1] = 1.0; inf[ny - 1] = 0.0; f[ny - 1] = zint[aij(i, ny - 1)]; } else { // reflective boundary factxp = (kdint[aij(i+1, ny-1)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dx * dx); factxm = (kdint[aij(i-1, ny-1)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dx * dx); factym = (kdint[aij(i, ny-2)] + kdint[aij(i, ny-1)]) / 2.0 * (dt / 2.0) / (dy * dy); diag[ny - 1] = 1.0 + factym; inf[ny - 1] = -factym; f[ny - 1] = zint[aij(i, ny-1)] + factxp * zint[aij(i+1, ny-1)] - (factxp + factxm) * zint[aij(i, ny-1)] + factxm * zint[aij(i-1, ny-1)]; } /* call tridag (inf,diag,sup,f,res,ny) do j=1,ny zintp(i,j)=res(j) enddo */ tridag(&inf, &diag, &sup, &f, &mut res, ny); for j in 0..ny { zintp[aij(i, j)] = res[j]; } /* enddo deallocate (f,diag,sup,inf,res) */ } /* ! stores result in 1D array do j=1,ny do i=1,nx ij=(j-1)*nx+i etot(ij)=etot(ij)+h(ij)-zintp(i,j) erate(ij)=erate(ij)+(h(ij)-zintp(i,j))/dt h(ij)=zintp(i,j) enddo enddo b=min(h,b) */ for j in 0..ny { for i in 0..nx { ij = aij(i, j); // FIXME: Track total erosion and erosion rate. h[ij] = zintp[ij] as f32; } } b.par_iter_mut().zip(h).for_each(|(mut b, h)| { *b = h.min(*b); }); /* deallocate (zint,kdint,zintp) return end subroutine Diffusion */ } /* !---------- ! subroutine to solve a tri-diagonal system of equations (from Numerical Recipes) SUBROUTINE tridag(a,b,c,r,u,n) implicit none INTEGER n double precision a(n),b(n),c(n),r(n),u(n) */ pub fn tridag(a: &[f64], b: &[f64], c: &[f64], r: &[f64], u: &mut [f64], n: usize) { /* INTEGER j double precision bet double precision,dimension(:),allocatable::gam allocate (gam(n)) if(b(1).eq.0.d0) stop 'in tridag' */ let mut j : usize; let mut bet : f64; let mut precision : f64; let mut gam: Vec; gam = vec![Default::default(); n]; assert!(b[0] != 0.0); /* ! first pass bet=b(1) u(1)=r(1)/bet do 11 j=2,n gam(j)=c(j-1)/bet bet=b(j)-a(j)*gam(j) if(bet.eq.0.) then print*,'tridag failed' stop endif u(j)=(r(j)-a(j)*u(j-1))/bet 11 continue */ bet = b[0]; u[0] = r[0] / bet; for j in 1..n { gam[j] = c[j - 1] / bet; bet = b[j] - a[j] * gam[j]; assert!(bet != 0.0); // Round 0: u[0] = r[0] / b[0] // = r'[0] / b'[0] // Round j: u[j] = (r[j] - a[j] * u'[j - 1]) / b'[j] // = (r[j] - a[j] * r'[j - 1] / b'[j - 1]) / b'[j] // = (r[j] - (a[j] / b'[j - 1]) * r'[j - 1]) / b'[j] // = (r[j] - w[j] * r'[j - 1]) / b'[j] // = r'[j] / b'[j] u[j] = (r[j] - a[j] * u[j - 1]) / bet; } /* ! second pass do 12 j=n-1,1,-1 u(j)=u(j)-gam(j+1)*u(j+1) 12 continue */ for j in (0..n - 1).rev() { u[j] = u[j] - gam[j + 1] * u[j + 1]; } /* deallocate (gam) return END */ }