use super::{terrain::BlocksOfInterest, SceneData, Terrain}; use crate::{ mesh::{greedy::GreedyMesh, Meshable}, render::{ pipelines::particle::ParticleMode, GlobalModel, Instances, Light, LodData, Model, ParticleInstance, ParticlePipeline, Renderer, }, }; use common::{ assets::{AssetExt, DotVoxAsset}, comp::{item::Reagent, object, Body, CharacterState, Ori, Pos, Shockwave}, figure::Segment, outcome::Outcome, resources::DeltaTime, span, spiral::Spiral2d, states::utils::StageSection, terrain::TerrainChunk, vol::{RectRasterableVol, SizedVol}, }; use hashbrown::HashMap; use rand::prelude::*; use specs::{Join, WorldExt}; use std::{f32::consts::PI, time::Duration}; use vek::*; pub struct ParticleMgr { /// keep track of lifespans particles: Vec, /// keep track of timings scheduler: HeartbeatScheduler, /// GPU Instance Buffer instances: Instances, /// GPU Vertex Buffers model_cache: HashMap<&'static str, Model>, } impl ParticleMgr { pub fn new(renderer: &mut Renderer) -> Self { Self { particles: Vec::new(), scheduler: HeartbeatScheduler::new(), instances: default_instances(renderer), model_cache: default_cache(renderer), } } pub fn handle_outcome(&mut self, outcome: &Outcome, scene_data: &SceneData) { span!(_guard, "handle_outcome", "ParticleMgr::handle_outcome"); let time = scene_data.state.get_time(); let mut rng = rand::thread_rng(); match outcome { Outcome::Explosion { pos, power, radius, is_attack, reagent, } => { if *is_attack { if *power < 0.0 { self.particles.resize_with( self.particles.len() + (200.0 * power.abs()) as usize, || { Particle::new( Duration::from_secs(1), time, ParticleMode::EnergyNature, *pos + Vec3::::zero() .map(|_| rng.gen_range(-1.0..1.0)) .normalized() * *radius, ) }, ); } else { self.particles.resize_with( self.particles.len() + (200.0 * power.abs()) as usize, || { Particle::new( Duration::from_secs(1), time, ParticleMode::CampfireFire, *pos + Vec3::::zero() .map(|_| rng.gen_range(-1.0..1.0)) .normalized() * *radius, ) }, ); } } else { self.particles.resize_with( self.particles.len() + if reagent.is_some() { 300 } else { 150 }, || { Particle::new( Duration::from_millis(if reagent.is_some() { 1000 } else { 250 }), time, match reagent { Some(Reagent::Blue) => ParticleMode::FireworkBlue, Some(Reagent::Green) => ParticleMode::FireworkGreen, Some(Reagent::Purple) => ParticleMode::FireworkPurple, Some(Reagent::Red) => ParticleMode::FireworkRed, Some(Reagent::Yellow) => ParticleMode::FireworkYellow, None => ParticleMode::Shrapnel, }, *pos, ) }, ); self.particles.resize_with( self.particles.len() + if reagent.is_some() { 100 } else { 200 }, || { Particle::new( Duration::from_secs(4), time, ParticleMode::CampfireSmoke, *pos + Vec3::::zero() .map(|_| rng.gen_range(-1.0..1.0)) .normalized() * *radius, ) }, ); } }, Outcome::ProjectileShot { .. } => {}, _ => {}, } } pub fn maintain( &mut self, renderer: &mut Renderer, scene_data: &SceneData, terrain: &Terrain, lights: &mut Vec, ) { span!(_guard, "maintain", "ParticleMgr::maintain"); if scene_data.particles_enabled { // update timings self.scheduler.maintain(scene_data.state.get_time()); // remove dead Particle self.particles .retain(|p| p.alive_until > scene_data.state.get_time()); // add new Particle self.maintain_body_particles(scene_data); self.maintain_boost_particles(scene_data); self.maintain_beam_particles(scene_data, lights); self.maintain_block_particles(scene_data, terrain); self.maintain_shockwave_particles(scene_data); } else { // remove all particle lifespans self.particles.clear(); // remove all timings self.scheduler.clear(); } self.upload_particles(renderer); } fn maintain_body_particles(&mut self, scene_data: &SceneData) { span!( _guard, "body_particles", "ParticleMgr::maintain_body_particles" ); let ecs = scene_data.state.ecs(); for (body, pos) in (&ecs.read_storage::(), &ecs.read_storage::()).join() { match body { Body::Object(object::Body::CampfireLit) => { self.maintain_campfirelit_particles(scene_data, pos) }, Body::Object(object::Body::BoltFire) => { self.maintain_boltfire_particles(scene_data, pos) }, Body::Object(object::Body::BoltFireBig) => { self.maintain_boltfirebig_particles(scene_data, pos) }, Body::Object(object::Body::BoltNature) => { self.maintain_boltnature_particles(scene_data, pos) }, Body::Object( object::Body::Bomb | object::Body::FireworkBlue | object::Body::FireworkGreen | object::Body::FireworkPurple | object::Body::FireworkRed | object::Body::FireworkYellow, ) => self.maintain_bomb_particles(scene_data, pos), _ => {}, } } } fn maintain_campfirelit_particles(&mut self, scene_data: &SceneData, pos: &Pos) { span!( _guard, "campfirelit_particles", "ParticleMgr::maintain_campfirelit_particles" ); let time = scene_data.state.get_time(); for _ in 0..self.scheduler.heartbeats(Duration::from_millis(10)) { self.particles.push(Particle::new( Duration::from_millis(250), time, ParticleMode::CampfireFire, pos.0, )); self.particles.push(Particle::new( Duration::from_secs(10), time, ParticleMode::CampfireSmoke, pos.0.map(|e| e + thread_rng().gen_range(-0.25..0.25)), )); } } fn maintain_boltfire_particles(&mut self, scene_data: &SceneData, pos: &Pos) { span!( _guard, "boltfire_particles", "ParticleMgr::maintain_boltfire_particles" ); let time = scene_data.state.get_time(); for _ in 0..self.scheduler.heartbeats(Duration::from_millis(10)) { self.particles.push(Particle::new( Duration::from_millis(250), time, ParticleMode::CampfireFire, pos.0, )); self.particles.push(Particle::new( Duration::from_secs(1), time, ParticleMode::CampfireSmoke, pos.0, )); } } fn maintain_boltfirebig_particles(&mut self, scene_data: &SceneData, pos: &Pos) { span!( _guard, "boltfirebig_particles", "ParticleMgr::maintain_boltfirebig_particles" ); let time = scene_data.state.get_time(); // fire self.particles.resize_with( self.particles.len() + usize::from(self.scheduler.heartbeats(Duration::from_millis(3))), || { Particle::new( Duration::from_millis(250), time, ParticleMode::CampfireFire, pos.0, ) }, ); // smoke self.particles.resize_with( self.particles.len() + usize::from(self.scheduler.heartbeats(Duration::from_millis(5))), || { Particle::new( Duration::from_secs(2), time, ParticleMode::CampfireSmoke, pos.0, ) }, ); } fn maintain_boltnature_particles(&mut self, scene_data: &SceneData, pos: &Pos) { let time = scene_data.state.get_time(); // nature self.particles.resize_with( self.particles.len() + usize::from(self.scheduler.heartbeats(Duration::from_millis(3))), || { Particle::new( Duration::from_millis(250), time, ParticleMode::EnergyNature, pos.0, ) }, ); } fn maintain_bomb_particles(&mut self, scene_data: &SceneData, pos: &Pos) { span!( _guard, "bomb_particles", "ParticleMgr::maintain_bomb_particles" ); let time = scene_data.state.get_time(); for _ in 0..self.scheduler.heartbeats(Duration::from_millis(10)) { // sparks self.particles.push(Particle::new( Duration::from_millis(1500), time, ParticleMode::GunPowderSpark, pos.0, )); // smoke self.particles.push(Particle::new( Duration::from_secs(2), time, ParticleMode::CampfireSmoke, pos.0, )); } } fn maintain_boost_particles(&mut self, scene_data: &SceneData) { span!( _guard, "boost_particles", "ParticleMgr::maintain_boost_particles" ); let state = scene_data.state; let ecs = state.ecs(); let time = state.get_time(); for (pos, character_state) in ( &ecs.read_storage::(), &ecs.read_storage::(), ) .join() { if let CharacterState::Boost(_) = character_state { self.particles.resize_with( self.particles.len() + usize::from(self.scheduler.heartbeats(Duration::from_millis(10))), || { Particle::new( Duration::from_secs(15), time, ParticleMode::CampfireSmoke, pos.0, ) }, ); } } } fn maintain_beam_particles(&mut self, scene_data: &SceneData, lights: &mut Vec) { let state = scene_data.state; let ecs = state.ecs(); let time = state.get_time(); for (pos, ori, character_state) in ( &ecs.read_storage::(), &ecs.read_storage::(), &ecs.read_storage::(), ) .join() { if let CharacterState::BasicBeam(b) = character_state { let particle_ori = b.particle_ori.unwrap_or_else(|| ori.look_vec()); if b.stage_section == StageSection::Cast { if b.static_data.base_hps > 0.0 { // Emit a light when using healing lights.push(Light::new(pos.0 + b.offset, Rgb::new(0.1, 1.0, 0.15), 1.0)); for i in 0..self.scheduler.heartbeats(Duration::from_millis(1)) { self.particles.push(Particle::new_beam( b.static_data.beam_duration, time + i as f64 / 1000.0, ParticleMode::HealingBeam, pos.0 + particle_ori * 0.5 + b.offset, pos.0 + particle_ori * b.static_data.range + b.offset, )); } } else { let mut rng = thread_rng(); let (from, to) = (Vec3::::unit_z(), particle_ori); let m = Mat3::::rotation_from_to_3d(from, to); // Emit a light when using flames lights.push(Light::new( pos.0 + b.offset, Rgb::new(1.0, 0.25, 0.05).map(|e| e * rng.gen_range(0.8..1.2)), 2.0, )); self.particles.resize_with( self.particles.len() + 2 * usize::from( self.scheduler.heartbeats(Duration::from_millis(1)), ), || { let phi: f32 = rng.gen_range(0.0..b.static_data.max_angle.to_radians()); let theta: f32 = rng.gen_range(0.0..2.0 * PI); let offset_z = Vec3::new( phi.sin() * theta.cos(), phi.sin() * theta.sin(), phi.cos(), ); let random_ori = offset_z * m * Vec3::new(-1.0, -1.0, 1.0); Particle::new_beam( b.static_data.beam_duration, time, ParticleMode::FlameThrower, pos.0 + random_ori * 0.5 + b.offset, pos.0 + random_ori * b.static_data.range + b.offset, ) }, ); } } } } } #[allow(clippy::same_item_push)] // TODO: Pending review in #587 fn maintain_block_particles( &mut self, scene_data: &SceneData, terrain: &Terrain, ) { span!( _guard, "block_particles", "ParticleMgr::maintain_block_particles" ); let dt = scene_data.state.ecs().fetch::().0; let time = scene_data.state.get_time(); let player_pos = scene_data .state .read_component_copied::(scene_data.player_entity) .unwrap_or_default(); let player_chunk = player_pos.0.xy().map2(TerrainChunk::RECT_SIZE, |e, sz| { (e.floor() as i32).div_euclid(sz as i32) }); struct BlockParticles<'a> { // The function to select the blocks of interest that we should emit from blocks: fn(&'a BlocksOfInterest) -> &'a [Vec3], // The range, in chunks, that the particles should be generated in from the player range: usize, // The emission rate, per block per second, of the generated particles rate: f32, // The number of seconds that each particle should live for lifetime: f32, // The visual mode of the generated particle mode: ParticleMode, // Condition that must be true cond: fn(&SceneData) -> bool, } let particles: &[BlockParticles] = &[ BlockParticles { blocks: |boi| &boi.leaves, range: 4, rate: 0.001, lifetime: 30.0, mode: ParticleMode::Leaf, cond: |_| true, }, BlockParticles { blocks: |boi| &boi.fires, range: 2, rate: 20.0, lifetime: 0.25, mode: ParticleMode::CampfireFire, cond: |_| true, }, BlockParticles { blocks: |boi| &boi.fire_bowls, range: 2, rate: 20.0, lifetime: 0.25, mode: ParticleMode::FireBowl, cond: |_| true, }, BlockParticles { blocks: |boi| &boi.smokers, range: 8, rate: 3.0, lifetime: 40.0, mode: ParticleMode::CampfireSmoke, cond: |_| true, }, BlockParticles { blocks: |boi| &boi.reeds, range: 6, rate: 0.004, lifetime: 40.0, mode: ParticleMode::Firefly, cond: |sd| sd.state.get_day_period().is_dark(), }, BlockParticles { blocks: |boi| &boi.flowers, range: 5, rate: 0.002, lifetime: 40.0, mode: ParticleMode::Firefly, cond: |sd| sd.state.get_day_period().is_dark(), }, BlockParticles { blocks: |boi| &boi.beehives, range: 3, rate: 0.5, lifetime: 30.0, mode: ParticleMode::Bee, cond: |sd| sd.state.get_day_period().is_light(), }, BlockParticles { blocks: |boi| &boi.snow, range: 4, rate: 0.025, lifetime: 15.0, mode: ParticleMode::Snow, cond: |_| true, }, ]; let mut rng = thread_rng(); for particles in particles.iter() { if !(particles.cond)(scene_data) { continue; } for offset in Spiral2d::new().take((particles.range * 2 + 1).pow(2)) { let chunk_pos = player_chunk + offset; terrain.get(chunk_pos).map(|chunk_data| { let blocks = (particles.blocks)(&chunk_data.blocks_of_interest); let avg_particles = dt * blocks.len() as f32 * particles.rate; let particle_count = avg_particles.trunc() as usize + (rng.gen::() < avg_particles.fract()) as usize; self.particles .resize_with(self.particles.len() + particle_count, || { let block_pos = Vec3::from(chunk_pos * TerrainChunk::RECT_SIZE.map(|e| e as i32)) + blocks.choose(&mut rng).copied().unwrap(); // Can't fail Particle::new( Duration::from_secs_f32(particles.lifetime), time, particles.mode, block_pos.map(|e: i32| e as f32 + rng.gen::()), ) }) }); } } } fn maintain_shockwave_particles(&mut self, scene_data: &SceneData) { let state = scene_data.state; let ecs = state.ecs(); let time = state.get_time(); for (_i, (_entity, pos, ori, shockwave)) in ( &ecs.entities(), &ecs.read_storage::(), &ecs.read_storage::(), &ecs.read_storage::(), ) .join() .enumerate() { let elapsed = time - shockwave.creation.unwrap_or_default(); let distance = shockwave.properties.speed * elapsed as f32; let radians = shockwave.properties.angle.to_radians(); let ori_vec = ori.look_vec(); let theta = ori_vec.y.atan2(ori_vec.x); let dtheta = radians / distance; let heartbeats = self.scheduler.heartbeats(Duration::from_millis(1)); for heartbeat in 0..heartbeats { if shockwave.properties.requires_ground { // 1 / 3 the size of terrain voxel let scale = 1.0 / 3.0; let scaled_speed = shockwave.properties.speed * scale; let sub_tick_interpolation = scaled_speed * 1000.0 * heartbeat as f32; let distance = shockwave.properties.speed * (elapsed as f32 - sub_tick_interpolation); let new_particle_count = distance / scale as f32; self.particles.reserve(new_particle_count as usize); for d in 0..((distance / scale) as i32) { let arc_position = theta - radians / 2.0 + dtheta * d as f32 * scale; let position = pos.0 + distance * Vec3::new(arc_position.cos(), arc_position.sin(), 0.0); let position_snapped = ((position / scale).floor() + 0.5) * scale; self.particles.push(Particle::new( Duration::from_millis(250), time, ParticleMode::GroundShockwave, position_snapped, )); } } else { for d in 0..3 * distance as i32 { let arc_position = theta - radians / 2.0 + dtheta * d as f32 / 3.0; let position = pos.0 + distance * Vec3::new(arc_position.cos(), arc_position.sin(), 0.0); self.particles.push(Particle::new( Duration::from_secs_f32(distance / 50.0), time, ParticleMode::FireShockwave, position, )); } } } } } fn upload_particles(&mut self, renderer: &mut Renderer) { span!(_guard, "upload_particles", "ParticleMgr::upload_particles"); let all_cpu_instances = self .particles .iter() .map(|p| p.instance) .collect::>(); // TODO: optimise buffer writes let gpu_instances = renderer .create_instances(&all_cpu_instances) .expect("Failed to upload particle instances to the GPU!"); self.instances = gpu_instances; } pub fn render( &self, renderer: &mut Renderer, scene_data: &SceneData, global: &GlobalModel, lod: &LodData, ) { span!(_guard, "render", "ParticleMgr::render"); if scene_data.particles_enabled { let model = &self .model_cache .get(DEFAULT_MODEL_KEY) .expect("Expected particle model in cache"); renderer.render_particles(model, global, &self.instances, lod); } } pub fn particle_count(&self) -> usize { self.instances.count() } pub fn particle_count_visible(&self) -> usize { self.instances.count() } } fn default_instances(renderer: &mut Renderer) -> Instances { let empty_vec = Vec::new(); renderer .create_instances(&empty_vec) .expect("Failed to upload particle instances to the GPU!") } const DEFAULT_MODEL_KEY: &str = "voxygen.voxel.particle"; fn default_cache(renderer: &mut Renderer) -> HashMap<&'static str, Model> { let mut model_cache = HashMap::new(); model_cache.entry(DEFAULT_MODEL_KEY).or_insert_with(|| { let vox = DotVoxAsset::load_expect(DEFAULT_MODEL_KEY); // NOTE: If we add texturing we may eventually try to share it among all // particles in a single atlas. let max_texture_size = renderer.max_texture_size(); let max_size = guillotiere::Size::new(i32::from(max_texture_size), i32::from(max_texture_size)); let mut greedy = GreedyMesh::new(max_size); let segment = Segment::from(&vox.read().0); let segment_size = segment.size(); let mut mesh = Meshable::::generate_mesh(segment, &mut greedy).0; // Center particle vertices around origin for vert in mesh.vertices_mut() { vert.pos[0] -= segment_size.x as f32 / 2.0; vert.pos[1] -= segment_size.y as f32 / 2.0; vert.pos[2] -= segment_size.z as f32 / 2.0; } // NOTE: Ignoring coloring / lighting for now. drop(greedy); renderer .create_model(&mesh) .expect("Failed to create particle model") }); model_cache } /// Accumulates heartbeats to be consumed on the next tick. struct HeartbeatScheduler { /// Duration = Heartbeat Frequency/Intervals /// f64 = Last update time /// u8 = number of heartbeats since last update /// - if it's more frequent then tick rate, it could be 1 or more. /// - if it's less frequent then tick rate, it could be 1 or 0. /// - if it's equal to the tick rate, it could be between 2 and 0, due to /// delta time variance etc. timers: HashMap, last_known_time: f64, } impl HeartbeatScheduler { pub fn new() -> Self { HeartbeatScheduler { timers: HashMap::new(), last_known_time: 0.0, } } /// updates the last elapsed times and elapsed counts /// this should be called once, and only once per tick. pub fn maintain(&mut self, now: f64) { span!(_guard, "maintain", "HeartbeatScheduler::maintain"); self.last_known_time = now; for (frequency, (last_update, heartbeats)) in self.timers.iter_mut() { // the number of frequency cycles that have occurred. let total_heartbeats = (now - *last_update) / frequency.as_secs_f64(); // exclude partial frequency cycles let full_heartbeats = total_heartbeats.floor(); *heartbeats = full_heartbeats as u8; // the remaining partial frequency cycle, as a decimal. let partial_heartbeat = total_heartbeats - full_heartbeats; // the remaining partial frequency cycle, as a unit of time(f64). let partial_heartbeat_as_time = frequency.mul_f64(partial_heartbeat).as_secs_f64(); // now minus the left over heart beat count precision as seconds, // Note: we want to preserve incomplete heartbeats, and roll them // over into the next update. *last_update = now - partial_heartbeat_as_time; } } /// returns the number of times this duration has elapsed since the last /// tick: /// - if it's more frequent then tick rate, it could be 1 or more. /// - if it's less frequent then tick rate, it could be 1 or 0. /// - if it's equal to the tick rate, it could be between 2 and 0, due to /// delta time variance. pub fn heartbeats(&mut self, frequency: Duration) -> u8 { span!(_guard, "HeartbeatScheduler::heartbeats"); let last_known_time = self.last_known_time; self.timers .entry(frequency) .or_insert_with(|| (last_known_time, 0)) .1 } pub fn clear(&mut self) { self.timers.clear() } } #[derive(Clone, Copy)] struct Particle { alive_until: f64, // created_at + lifespan instance: ParticleInstance, } impl Particle { fn new(lifespan: Duration, time: f64, mode: ParticleMode, pos: Vec3) -> Self { Particle { alive_until: time + lifespan.as_secs_f64(), instance: ParticleInstance::new(time, lifespan.as_secs_f32(), mode, pos), } } fn new_beam( lifespan: Duration, time: f64, mode: ParticleMode, pos1: Vec3, pos2: Vec3, ) -> Self { Particle { alive_until: time + lifespan.as_secs_f64(), instance: ParticleInstance::new_beam(time, lifespan.as_secs_f32(), mode, pos1, pos2), } } }